342 research outputs found

    Mass-loaded spherical accretion flows

    Get PDF
    We have calculated the evolution of spherical accretion flows undergoing mass-loading from embedded clouds through either conduction or hydrodynamical ablation. We have observed the effect of varying the ratios of the mass-loading timescale and the cooling timescale to the ballistic crossing timescale through the mass-loading region. We have also varied the ratio of the potential energy of a particle injected into the flow near the outer region of mass-loading to the temperature at which a minimum occurs in the cooling curve. The two types of mass-loading produce qualitatively different types of behaviour in the accretion flow, since mass-loading through conduction requires the ambient gas to be hot, whereas mass ablation from clumps occurs throughout the flow. Higher ratios of injected to accreted mass typically occur with hydrodynamical ablation, in agreement with previous work on wind-blown bubbles and supernova remnants. We find that mass-loading damps the radiative overstability of such flows, in agreement with our earlier work. If the mass-loading is high enough it can stabilize the accretion shock at a constant radius, yielding an almost isothermal subsonic post-shock flow. Such solutions may be relevant to cooling flows onto massive galaxies. Mass-loading can also lead to the formation of isolated shells of high temperature material, separated by gas at cooler temperatures

    Numerical simulations of shocks encountering clumpy regions

    Full text link
    We present numerical simulations of the adiabatic interaction of a shock with a clumpy region containing many individual clouds. Our work incorporates a sub-grid turbulence model which for the first time makes this investigation feasible. We vary the Mach number of the shock, the density contrast of the clouds, and the ratio of total cloud mass to inter-cloud mass within the clumpy region. Cloud material becomes incorporated into the flow. This "mass-loading" reduces the Mach number of the shock, and leads to the formation of a dense shell. In cases in which the mass-loading is sufficient the flow slows enough that the shock degenerates into a wave. The interaction evolves through up to four stages: initially the shock decelerates; then its speed is nearly constant; next the shock accelerates as it leaves the clumpy region; finally it moves at a constant speed close to its initial speed. Turbulence is generated in the post-shock flow as the shock sweeps through the clumpy region. Clouds exposed to turbulence can be destroyed more rapidly than a similar cloud in an "isolated" environment. The lifetime of a downstream cloud decreases with increasing cloud-to-intercloud mass ratio. We briefly discuss the significance of these results for starburst superwinds and galaxy evolution.Comment: 17 pages, 19 figures, accepted for publication in MNRA

    The Formation of Broad Emission Line Regions in Supernova-QSO Wind Interactions

    Get PDF
    We show that a cooled region of shocked supernova ejecta forms in a type II supernova-QSO wind interaction, and has a density, an ionization parameter, and a column density compatible with those inferred for the high ionization component of the broad emission line regions in QSOs. The calculations are based on the assumption that the ejecta flow is described initially by a similarity solution investigated by Chevalier (1982) and Nadyozhin (1985) and is spherically symmetric. Heating and cooling appropriate for gas irradiated by a nearby powerful continuum source is included in our model, together with reasonable assumptions for the properties of the QSO wind. The model results are also in agreement with observational correlations and imply reasonable supernova rates.Comment: 13 pages, 7 figures, to be published in A&

    Modeling the RXTE light curve of η\eta Carinae from a 3-D SPH simulation of its binary wind collision

    Full text link
    The very massive star system η\eta Carinae exhibits regular 5.54-year (2024-day) period disruptive events in wavebands ranging from the radio to X-ray. There is a growing consensus that these events likely stem from periastron passage of an (as yet) unseen companion in a highly eccentric (ϵ0.9\epsilon \sim 0.9) orbit. This paper presents three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the orbital variation of the binary wind-wind collision, and applies these to modeling the X-ray light curve observed by the Rossi X-ray Timing Explorer (RXTE). By providing a global 3-D model of the phase variation of the density of the interacting winds, the simulations allow computation of the associated variation in X-ray absorption, presumed here to originate from near the apex of the wind-wind interaction cone. We find that the observed RXTE light curve can be readily fit if the observer's line of sight is within this cone along the general direction of apastron. Specifically, the data are well fit by an assumed inclination i=45i = 45^{\circ} for the orbit's polar axis, which is thus consistent with orbital angular momentum being along the inferred polar axis of the Homunculus nebula. The fits also constrain the position angle ϕ\phi that an orbital-plane projection makes with the apastron side of the semi-major axis, strongly excluding positions ϕ<9\phi < 9^{\circ} along or to the retrograde side of the axis, with the best fit position given by ϕ=27\phi = 27^{\circ}. Overall the results demonstrate the utility of a fully 3-D dynamical model for constraining the geometric and physical properties of this complex colliding-wind binary system.Comment: 5 pages, 4 figures, accepted to MNRAS Letter

    The Thermal Stability of Mass-Loaded Flows

    Full text link
    We present a linear stability analysis of a flow undergoing conductively-driven mass-loading from embedded clouds. We find that mass-loading damps isobaric and isentropic perturbations, and in this regard is similar to the effect of thermal conduction, but is much more pronounced where many embedded clumps exist. The stabilizing influence of mass-loading is wavelength independent against isobaric (condensing) perturbations, but wavelength dependent against isentropic (wave-like) perturbations. We derive equations for the degree of mass-loading needed to stabilize such perturbations. We have also made 1D numerical simulations of a mass-loaded radiative shock and demonstrated the damping of the overstability when mass-loading is rapid enough.Comment: 4 pages, 1 figure, to be published in A&

    Self-Similar Evolution of Wind-Blown Bubbles with Mass-loading by Conductive Evaporation

    Get PDF
    We present similarity solutions for mass-loaded adiabatic bubbles that are blown by winds having time dependent mechanical luminosities. We consider mass-loading through conductive evaporation of clumps. In the limit of little mass loading a similarity solution found by Dyson (1973) for expansion into a smooth ambient medium is recovered. We find that the Mach number in the shocked mass-loaded wind shows a radial dependence that varies qualitatively from solution to solution. In some cases it is everywhere less than unity in the frame of the clumps being evaporated, while in others it is everywhere greater than unity. In some solutions the mass-loaded shocked wind undergoes one or two sonic transitions in the clump frame. Maximum possible values of the ratio of evaporated mass to stellar wind mass are found as a consequence of the evaporation rates dependence on temperature and the lowering of the temperature by mass-loading. Mass-loading tends to reduce the emissivity in the interior of the bubble relative to its limb, whilst simultaneously increasing the central temperature relative to the limb temperature.Comment: 12 pages, 8 figures, accepted for publication by A&

    Cosmic ray moderation of the thermal instability

    Get PDF
    We apply the Hermite-Bieler theorem in the analysis of the effect of cosmic rays on the thermal stability of an initially uniform, static background. The cosmic rays were treated in a fluid approximation and the diffusion coefficient was assumed to be constant in time and space. The inclusion of cosmic rays does not alter the criterion for the thermal stability of a medium subjected to isobaric perturbations. It does alter the criteria for the stability of a medium perturbed by small amplitude sound waves. In the limit of a high background cosmic ray pressure to thermal pressure ratio, the instability in response to high frequency sound waves is suppressed

    “Epic-Genetics”: An exploration of preservice helping professionals’ (mis)understanding of epigenetic influences on human development

    Get PDF
    Mental health researchers emphasize the importance of practitioner understanding of biology-environment interplay. Accordingly, our goal of the study described in this article was to understand students’ preconceptions and misconceptions about biological and environmental influences on development through investigating their conceptions of epigenetics. Using a short-term longitudinal design, we explored preservice helping professionals’ conceptions and misconceptions pertaining to epigenetics within the framework of a graduate level human development course. Baseline knowledge about epigenetics was low. Students developed multiple misconceptions about epigenetics and how the phenomenon relates to biological and environmental influences on human development. Students reported feeling highly efficacious for detecting and resolving misconceptions related to biology-environment interactions but varied in their perceptions of interest for learning about the content. Findings support the use of open-ended questions to detect misconceptions about epigenetics and are discussed in light of how to teach students about this phenomenon. Overall, this research speaks to the importance of understanding the misconceptions students believe and instructional strategies that may assist in correcting them

    The evolution of mass loaded supernova remnants: II. Temperature dependent mass injection rates

    Get PDF
    We investigate the evolution of spherically symmetric supernova remnants in which mass loading takes place due to conductively driven evaporation of embedded clouds. Numerical simulations reveal significant differences between the evolution of conductively mass loaded and the ablatively mass loaded remnants studied in Paper I. A main difference is the way in which conductive mass loading is extinguished at fairly early times, once the interior temperature of the remnant falls below ~ 107 K. Thus, at late times remnants that ablatively mass load are dominated by loaded mass and thermal energy, while those that conductively mass load are dominated by swept-up mass and kinetic energy. Simple approximations to the remnant evolution, complementary to those in Paper I, are given
    corecore