209 research outputs found

    Survey of attitudes, materials and methods employed in endodontic treatment by general dental practitioners in North Jordan

    Get PDF
    BACKGROUND: General dental practitioners provide the majority of endodontic treatment in Jordan. The aim of this study was to gather information on the methods, materials and attitudes employed in root canal treatment by dentists in North Jordan, in order to evaluate and improve the quality of current practice. METHODS: A questionnaire was posted to all registered general dental practitioners working in private practice in Irbid Governate in North Jordan (n = 181). The questionnaire included information on methods, materials and techniques used in endodontic treatment. RESULTS: Reply rate was 72% (n = 131). The results demonstrated that only five dentists used rubber dam occasionally and not routinely. The majority used cotton rolls for isolation solely or in combination with a high volume saliva ejector (n = 116). The most widely used irrigants were sodium hypochlorite and hydrogen peroxide, which were used by 32.9% (n = 43) and 33.6% (n = 44) of the respondents, respectively. Forty eight percent of the respondents (n = 61) used the cold lateral condensation technique for canal obturation, 31.3% (n = 41) used single cone, 9.9% (n = 13) used vertical condensation and 12.2% (n = 16) used paste or cement only for the obturation. The majority used zinc oxide eugenol as a sealer (72.5%). All, but one, respondents used hand instruments for canal preparation and the technique of choice was step back (52.7%). More than 50% (n = 70) of the dentists took one radiograph for determining the working length, whilst 22.9% (n = 30) did not take any radiograph at all. Most practitioners performed treatment in three visits for teeth with two or more root canals, and in two visits for teeth with a single root canal. CONCLUSIONS: This study indicates that dentists practicing in North Jordan do not comply with international quality standards and do not use recently introduced techniques. Many clinicians never take a radiograph for determining the working length and never used rubber dam or intra-canal medicaments

    Search for electroweak production of charginos and neutralinos at s\sqrt{s} = 13 TeV in final states containing hadronic decays of WW, WZ, or WH and missing transverse momentum

    Get PDF
    Data availability: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in “CMS data preservation, re-use and open access policy”.A preprint version of this article is archived at: arXiv:2205.09597v2 [hep-ex], https://arxiv.org/abs/2205.09597v2 . Comments: Replaced with the published version. Added the journal reference. All the figures and tables, including additional supplementary figures and tables, can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/SUS-21-002 (CMS Public Pages). Report number: CMS-SUS-21-002, CERN-EP-2022-031This Letter presents a search for direct production of charginos and neutralinos via electroweak interactions. The results are based on data from proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb^{-1}. The search considers final states with large missing transverse momentum and pairs of hadronically decaying bosons WW, WZ, and WH, where H is the Higgs boson. These bosons are identified using novel algorithms. No significant excess of events is observed relative to the expectations from the standard model. Limits at the 95% confidence level are placed on the cross section for production of mass-degenerate wino-like supersymmetric particles χ~±1 and χ~02, and mass-degenerate higgsino-like supersymmetric particles χ~±1, χ~02, and χ~03. In the limit of a nearly-massless lightest supersymmetric particle χ~01, wino-like particles with masses up to 870 and 960 GeV are excluded in the cases of χ~02 → Zχ~01 and χ~02 → Hχ~01, respectively, and higgsino-like particles are excluded between 300 and 650 GeV.SCOAP3

    Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at s\sqrt{s} = 13 TeV

    Get PDF
    A preprint version of this article is available at arXiv:2210.00043v2 [hep-ex], https://arxiv.org/abs/2210.00043v2 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables, including additional supplementary figures, can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-20-009 (CMS Public Pages). Report number: CMS-B2G-20-009, CERN-EP-2022-152.Data availability: see: https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-20-009 .A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016-2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138 fb^{-1}. The search is sensitive to resonances with masses between 1.3 and 6 TeV, decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 Z' and W' resonances with masses below 4.8 TeV are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and 2.7 TeV, respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1 fb.SCOAP3

    Measurement of the Higgs boson production via vector boson fusion and its decay into bottom quarks in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv:2308.01253v2 [hep-ex], https://arxiv.org/abs/2308.01253v2 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-22-009 (CMS Public Pages). Report number: CMS-HIG-22-009, CERN-EP-2023-110.A measurement of the Higgs boson (H) production via vector boson fusion (VBF) and its decay into a bottom quark-antiquark pair (bb¯) is presented using proton-proton collision data recorded by the CMS experiment at s√ = 13 TeV and corresponding to an integrated luminosity of 90.8 fb−1. Treating the gluon-gluon fusion process as a background and constraining its rate to the value expected in the standard model (SM) within uncertainties, the signal strength of the VBF process, defined as the ratio of the observed signal rate to that predicted by the SM, is measured to be μqqHHbb¯ = 1.01 +0.55−0.46. The VBF signal is observed with a significance of 2.4 standard deviations relative to the background prediction, while the expected significance is 2.7 standard deviations. Considering inclusive Higgs boson production and decay into bottom quarks, the signal strength is measured to be μincl.Hbb¯ = 0.99 +0.48−0.41, corresponding to an observed (expected) significance of 2.6 (2.9) standard deviations.SCOAP3, STFC; Marie-Curie program and the European Research Council and Horizon 2020 Gran

    Performance of the CMS muon trigger system in proton-proton collisions at √(s) = 13

    Get PDF
    © Copyright 2021 CERN for the benefit of the CMS collaboration. The muon trigger system of the CMS experiment uses a combination of hardware and software to identify events containing a muon. During Run 2 (covering 2015–2018) the LHC achieved instantaneous luminosities as high as 2 × 1034 while delivering proton-proton collisions at √(s) = 13. The challenge for the trigger system of the CMS experiment is to reduce the registered event rate from about 40MHz to about 1kHz. Significant improvements important for the success of the CMS physics program have been made to the muon trigger system via improved muon reconstruction and identification algorithms since the end of Run 1 and throughout the Run 2 data-taking period. The new algorithms maintain the acceptance of the muon triggers at the same or even lower rate throughout the data-taking period despite the increasing number of additional proton-proton interactions in each LHC bunch crossing. In this paper, the algorithms used in 2015 and 2016 and their improvements throughout 2017 and 2018 are described. Measurements of the CMS muon trigger performance for this data-taking period are presented, including efficiencies, transverse momentum resolution, trigger rates, and the purity of the selected muon sample. This paper focuses on the single- and double-muon triggers with the lowest sustainable transverse momentum thresholds used by CMS. The efficiency is measured in a transverse momentum range from 8 to several hundred.SCOAP3

    Evidence for tWZ production in proton-proton collisions at √s=13 TeV in multilepton final states

    Get PDF
    Data availability - https://www.sciencedirect.com/science/article/pii/S0370269324003733?via%3Dihub#dav0001 [Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS data preservation, re-use and open access policy (https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=6032&filename=CMSDataPolicyV1.2.pdf&version=2)]The first evidence for the standard model production of a top quark in association with a W boson and a Z boson is reported. The measurement is performed in multilepton final states, where the Z boson is reconstructed via its decays to electron or muon pairs. At least one W boson, associated or from top quark decay, decays leptonically, too. The analysed data were recorded by the CMS experiment at the CERN LHC in 2016–2018 in proton-proton collisions at √s=13 TeV, and correspond to an integrated luminosity of 138 fb−1. The measured cross section is 354±54(stat)±95(syst) fb, and corresponds to a statistical significance of 3.4 standard deviations.SCOAP

    Measurement of inclusive and differential cross sections for single top quark production in association with a W boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv:2208.00924v2 [hep-ex], https://arxiv.org/abs/2208.00924v2 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables, including additional supplementary figures, can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-21-010 (CMS Public Pages). Report number: CMS-TOP-21-010, CERN-EP-2022-158.Measurements of the inclusive and normalised differential cross sections are presented for the production of single top quarks in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data used were recorded with the CMS detector at the LHC during 2016-2018, and correspond to an integrated luminosity of 138 fb^{−1}. Events containing one electron and one muon in the final state are analysed. For the inclusive measurement, a multivariate discriminant, exploiting the kinematic properties of the events is used to separate the signal from the dominant tt¯ background. A cross section of 79.2 ± 0.9 (stat) +7.7−8.0 (syst) ± 1.2 (lumi) pb is obtained, consistent with the predictions of the standard model. For the differential measurements, a fiducial region is defined according to the detector acceptance, and the requirement of exactly one jet coming from the fragmentation of a bottom quark. The resulting distributions are unfolded to particle level and agree with the predictions at next-to-leading order in perturbative quantum chromodynamics.SCOAP3

    Search for Higgs boson decays to a Z boson and a photon in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv:2204.12945v2 [hep-ex], https://arxiv.org/abs/2204.12945v2 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-19-014 (CMS Public Pages). Report number: CMS-HIG-19-014, CERN-EP-2022-019.Results are presented from a search for the Higgs boson decay H → Zγ, where Z → ℓ+ℓ− with ℓ = e or μ. The search is performed using a sample of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb^{−1}. Events are assigned to mutually exclusive categories, which exploit differences in both event topology and kinematics of distinct Higgs production mechanisms to enhance signal sensitivity. The signal strength μ, defined as the product of the cross section and the branching fraction [σ(pp → H)B(H → Zγ)] relative to the standard model prediction, is extracted from a simultaneous fit to the ℓ+ℓ−γ invariant mass distributions in all categories and is found to be μ = 2.4 ± 0.9 for a Higgs boson mass of 125.38 GeV. The statistical significance of the observed excess of events is 2.7 standard deviations. This measurement corresponds to σ(pp → H)B(H → Zγ) = 0.21 ± 0.08 pb. The observed (expected) upper limit at 95% confidence level on μ is 4.1 (1.8). The ratio of branching fractions B(H → Zγ)/B(H → γγ) is measured to be 1.5 +0.7−0.6, which agrees with the standard model prediction of 0.69 ± 0.04 at the 1.5 standard deviation level.SCOAP3
    corecore