2 research outputs found

    The use of gene expression to unravel the single and mixture toxicity of abamectin and difenoconazole on survival and reproduction of the springtail Folsomia candida

    Get PDF
    Pesticides risk assessments have traditionally focused on the effects on standard parameters, such as mortality, reproduction and development. However, one of the first signs of adverse effects that occur in organisms exposed to stress conditions is an alteration in their genomic expression, which is specific to the type of stress, sensitive to very low contaminant concentrations and responsive in a few hours. The aim of the present study was to evaluate the single and binary mixture toxicity of commercial products of abamectin (Kraft® 36 EC) and difenoconazole (Score® 250 EC) to Folsomia candida. Laboratory toxicity tests were conducted to access the effects of these pesticides on springtail survival, reproduction and gene expression. The reproduction assays gave EC50 and EC10 values, respectively, of 6.3 and 1.4 mg a.s./kg dry soil for abamectin; 1.0 and 0.12 mg a.s./kg dry soil for Kraft® 36 EC; and 54 and 23 mg a.s./kg dry soil for Score® 250 EC. Technical difenoconazole did not have any effect at the concentrations tested. No significant differences in gene expression were found between the abamectin concentrations tested (EC10 and EC50) and the solvent control. Exposure to Kraft® 36 EC, however, significantly induced Cyp6 expression at the EC50 level, while VgR was significantly downregulated at both the EC10 and EC50. Exposure to the simple pesticide mixture of Kraft® 36 EC + Score® 250 EC caused significant up regulation of ABC transporter, and significant down regulation of VgR relative to the controls. GABA receptor also showed significant down-regulation between the EC10 and EC50 mixture treatments. Results of the present study demonstrate that pesticide-induced gene expression effects precede and occur at lower concentrations than organism-level responses. Integrating "omic" endpoints in traditional bioassays may thus be a promising way forward in pesticide toxicity evaluations

    Impact of temperature on the toxicity of Kraft 36 EC® (a.s. abamectin) and Score 250 EC® (a.s. difenoconazole) to soil organisms under realistic environmental exposure scenarios

    Get PDF
    Pesticides can affect all receiving compartments, especially soils, and their fate and effects may be enhanced by temperature, increasing their risk to ecological functions of soils. In Brazil, the most widely used pesticides are the insecticide Kraft 36 EC® (a.s. abamectin) and the fungicide Score 250 EC® (a.s. difenoconazole), which are commonly used in strawberry, often simultaneously as a mixture. The aim of this study was to evaluate the toxicity of realistic environmental applications, single and in mixtures, for both pesticides to the springtail Folsomia candida and the plant species Allium cepa (onion) and Lycopersicum esculentum (tomato). Mesocosms filled with Brazilian natural soil (lattosolo) were dosed with water (control), Kraft (10.8 g a.s/ha), Score (20 g.a.s/ha) and Kraft + Score (10.8 + 20 g a.s./ha). The applications were repeated every 7 days, during 18 days of experiment, and simulating rainfall twice a week. Collembola reproduction tests were conducted with soils from the first (day 1) and last day (day 18) of experiment for each treatment. Plant toxicity tests were carried out in the experimental units. The experiments were run at 23 °C and 33 °C. Kraft, alone and in the binary mixture, showed high toxicity to the springtails in soils from both days 1 and 18, especially at 23 °C where it caused 100% mortality. Score however, was not toxic to the springtails. Plant growth was reduced by Score, but responses varied depending on temperature. This study indicates a high environmental risk of the insecticide Kraft, particularly at lower temperatures (23 °C), and an influence of temperature on pesticide fate and effects
    corecore