16 research outputs found

    Antihypercholesterolemic and Antioxidative Potential of an Extract of the Plant, Piper betle

    Get PDF
    Hypercholesterolemia is a dominant risk factor for atherosclerosis and cardiovascular diseases. In the present study, the putative antihypercholesterolemic and antioxidative properties of an ethanolic extract of Piper betle and of its active constituent, eugenol, were evaluated in experimental hypercholesterolemia induced by a single intraperitoneal injection of Triton WR-1339 (300 mg/kg b.wt) in Wistar rats. Saline-treated hypercholesterolemic rats revealed significantly higher mean blood/serum levels of glucose, total cholesterol, triglycerides, low density and very low density lipoprotein cholesterol, and of serum hepatic marker enzymes; in addition, significantly lower mean serum levels of high density lipoprotein cholesterol and significantly lower mean activities of enzymatic antioxidants and nonenzymatic antioxidants were noted in hepatic tissue samples from saline-treated hypercholesterolemic rats, compared to controls. However, in hypercholesterolemic rats receiving the Piper betle extract (500 mg/kg b.wt) or eugenol (5 mg/kg b.wt) for seven days orally, all these parameters were significantly better than those in saline-treated hypercholesterolemic rats. The hypercholesterolemia-ameliorating effect was better defined in eugenol-treated than in Piper betle extract-treated rats, being as effective as that of the standard lipid-lowering drug, lovastatin (10 mg/kg b.wt). These results suggest that eugenol, an active constituent of the Piper betle extract, possesses antihypercholesterolemic and other activities in experimental hypercholesterolemic Wistar rats

    Extract of Antrodia camphorata

    Get PDF
    In this study, the neuroprotective effect of an extract of Antrodia camphorata (A. camphorata), a fungus commonly used in Chinese folk medicine for treatment of viral hepatitis and cancer, alone or in combination with aspirin was investigated in a rat embolic stroke model. An ischemic stroke was induced in rats by a selective occlusion of the middle cerebral artery (MCA) with whole blood clots and then orally treated with A. camphorata (0.25 and 0.75 g/kg/day) alone and combined with aspirin (5 mg/kg/day). Sixty days later, the brains were removed, sectioned, and stained with triphenyltetrazolium chloride and analysed by a commercial image processing software program. Brain infarct volume, neurobehavioral score, cerebral blood perfusion, and subarachnoid and intracerebral hemorrhage incidence were perceived. In addition, potential bleeding side effect of the combinative therapy was assessed by measuring hemoglobin (Hb) content during intracerebral hemorrhage and gastric bleeding, prothrombin time (PT), and occlusion time (OT) after oral administration. Posttreatment with high dose A. camphorata significantly reduced infarct volume and improved neurobehavioral score (P < 0.05). Since A. camphorata alone or with aspirin did not alter the Hb level, this treatment is safe and does not cause hemorrhagic incident. Remarkably, the combination of A. camphorata and aspirin did not show a significant effect on the bleeding time, PT and OT increase suggesting that A. camphorata may have the neuroprotective effect without the prolongation of bleeding time or coagulation time. From these observations, we suggest that combinative therapy of A. camphorata and aspirin might offer enhanced neuroprotective efficacies without increasing side effects

    Deciphering the potential efficacy of acetyl-L-carnitine (ALCAR) in maintaining connexin-mediated lenticular homeostasis

    No full text
    Purpose: To determine the putative role of acetyl-L-carnitine (ALCAR) in maintaining normal intercellular communication in the lens through connexin. Methods: In the present study, Wistar rat pups were divided into 3 groups of eight each. On postpartum day ten, Group I rat pups received an intraperitoneal injection (50 µl) of 0.89% saline. Rats in Groups II and III received a subcutaneous injection (50 µl) of sodium selenite (19 µmol/kg bodyweight); Group III rat pups also received an intraperitoneal injection of ALCAR (200 mg/kg bodyweight) once daily on postpartum days 9-14. Both eyes of each pup were examined from day 16 up to postpartum day 30. Alterations in the mean activity of the channel pumps, calcium-ATPase and sodium/ potassium-ATPase, were determined. The expression of genes encoding key lenticular gap junctions (connexin 46 and connexin 50) and a channel pump (plasma membrane Ca 2+ -ATPase [PMCA1]) was evaluated by reverse transcription-PCR. Immunoblot analysis was also performed to confirm the differential expression of key lenticular connexin proteins. In addition, bioinformatics analysis was performed to determine the interacting residues of the connexin proteins with ALCAR. Results: Significantly lower mean activities of Ca 2+ -ATPase and Na + /K + -ATPase were observed in the lenses of Group II rats than those in Group I rat lenses. However, the observed mean activities of Ca 2+ -ATPase and Na + /K + -ATPase in Group III rat lenses were significantly higher than those in Group II rat lenses. The mean mRNA transcript levels of the connexin 46 and connexin 50 genes were significantly lower, while the mean levels of PMCA1 gene transcripts were significantly higher, in Group II rat lenses than in Group I rat lenses. Immunoblot analysis also confirmed the altered expression of connexin proteins in lysates of whole lenses of Group II rats. However, the expression of connexin 46 and connexin 50 proteins in lenses from group III rats was essentially similar to that noted in lenses from normal (Group I) rats. Hydrogen bond-interaction between ALCAR and amino acid residues at the functional domain regions of connexin 46 and connexin 50 proteins was also demonstrated through bioinformatics tools. Conclusions: The results suggest that ALCAR plays a key role in maintaining lenticular homeostasis by promoting gap junctional intercellular communication
    corecore