441 research outputs found

    Production of B cell growth factor by a Leu-7+, OK M1+ non-T cell with the features of large granular lymphocytes.

    Get PDF

    Rapid System to Detect Variants of SARS-CoV-2 in Nasopharyngeal Swabs

    Get PDF
    Currently, the reference method for identifying the presence of variants of SARS-CoV-2 is whole genome sequencing. Although it is less expensive than in the past, it is still time-consuming, and interpreting the results is difficult, requiring staff with specific skills who are not always available in diagnostic laboratories. The test presented in this study aimed to detect, using traditional real-time PCR, the presence of the main variants described for the spike protein of the SARS-CoV-2 genome. The primers and probes were designed to detect the main deletions that characterize the different variants. The amplification targets were deletions in the S gene: 25-27, 69-70, 241-243, and 157-158. In the ORF1a gene, the deletion 3675-3677 was chosen. Some of these mutations can be considered specific variants, while others can be identified by the simultaneous presence of one or more deletions. We avoided using point mutations in order to improve the speed of the test. Our test can help clinical and medical microbiologists quickly recognize the presence of variants in biological samples (particularly nasopharyngeal swabs). The test can also be used to identify variants of the virus that could potentially be more diffusive as well as not responsive to the vaccine

    Immunomodulatory agents as potential therapeutic or preventive strategies for COVID-19

    Get PDF
    Currently, the COVID-19 pandemic, caused by the novel SARS-CoV-2 coronavirus, represents the greatest global health threat. Most people infected by the virus present mild to moderate respiratory symptoms and recover with supportive treatments. However, certain susceptible hosts develop an acute respiratory distress syndrome (ARDS), associated with an inflammatory “cytokine storm”, leading to lung damage. Despite the current availability of different COVID-19 vaccines, the new emerging SARS-CoV-2 genetic variants represent a major concern worldwide, due to their increased transmissibility and rapid spread. Indeed, it seems that some mutations or combinations of mutations might confer selective advantages to the virus, such as the ability to evade the host immune responses elicited by COVID-19 vaccines. Several therapeutic approaches have been investigated but, to date, a unique and fully effective therapeutic protocol has not yet been achieved. In addition, steroid-based therapies, aimed to reduce inflammation in patients with severe COVID-19 disease, may increase the risk of opportunistic infections, increasing the hospitalization time and mortality rate of these patients. Hence, there is an unmet need to develop more effective therapeutic options. Here, we discuss the potential use of natural immunomodulators such as Thymosin α1 (Tα1), all-trans retinoic acid (ATRA), and lactoferrin (LF), as adjunctive or preventive treatment of severe COVID-19 disease. These agents are considered to be multifunctional molecules because of their ability to enhance antiviral host immunity and restore the immune balance, depending on the host immune status. Furthermore, they are able to exert a broad-spectrum antimicrobial activity by means of direct interactions with cellular or molecular targets of pathogens or indirectly by increasing the host immune response. Thus, due to the aforementioned properties, these agents might have a great potential in a clinical setting, not only to counteract SARS-CoV-2 infection, but also to prevent opportunistic infections in critically ill COVID-19 patients

    Don't forget the jumper's knee in the young sportsman: evaluation of patellar tendinopathy with a high frequency ultrasound probe.

    Get PDF
    8Patellar tendinopathy, or Jumper's knee, is a painful knee condition caused by inflammation of the patella tendon. This condition is most frequently observed in subjects who play sports that require repetitive regular jumping. Jumper's knee is frequently misdiagnosed as a minor injury and many athletes, like our patient, keep on training and competing and either tend to ignore the injury or attempt to treat it themselves. However, jumper's knee is a serious condition that requires a correct and timely diagnosis, which often necessitates ultrasound investigation in order to start the most appropriate treatment.openopenRuaro B; Cutolo M; Alessandri E; Zaottini F; Picasso R; Pistoia F; Ferrari G; Martinoli C.Ruaro, B; Cutolo, M; Alessandri, E; Zaottini, F; Picasso, R; Pistoia, F; Ferrari, G; Martinoli, C

    Blow-up solutions for linear perturbations of the Yamabe equation

    Full text link
    For a smooth, compact Riemannian manifold (M,g) of dimension N \geg 3, we are interested in the critical equation Δgu+(N2/4(N1)Sg+ϵh)u=uN+2/N2inM,u>0inM,\Delta_g u+(N-2/4(N-1) S_g+\epsilon h)u=u^{N+2/N-2} in M, u>0 in M, where \Delta_g is the Laplace--Beltrami operator, S_g is the Scalar curvature of (M,g), hC0,α(M)h\in C^{0,\alpha}(M), and ϵ\epsilon is a small parameter

    Sign-changing tower of bubbles for a sinh-Poisson equation with asymmetric exponents

    Full text link
    Motivated by the statistical mechanics description of stationary 2D-turbulence, for a sinh-Poisson type equation with asymmetric nonlinearity, we construct a concentrating solution sequence in the form of a tower of singular Liouville bubbles, each of which has a different degeneracy exponent. The asymmetry parameter γ(0,1]\gamma\in(0,1] corresponds to the ratio between the intensity of the negatively rotating vortices and the intensity of the positively rotating vortices. Our solutions correspond to a superposition of highly concentrated vortex configurations of alternating orientation; they extend in a nontrivial way some known results for γ=1\gamma=1. Thus, by analyzing the case γ1\gamma\neq1 we emphasize specific properties of the physically relevant parameter γ\gamma in the vortex concentration phenomena

    The combined use of VIGl@ct (R) (bioMerieux) and fluorescent amplified length fragment polymorphisms in the investigation of potential outbreaks

    Get PDF
    Even with good surveillance programmes, hospital-acquired infections (HAls) are not always recognized and this may lead to an outbreak. In order to reduce this risk, we propose a model for prompt detection of HAls, based on the use of a real-time epidemiological information system called VIGI@ct (R) (bioMerieux, Las Balmas, France) and on the rapid confirmation or exclusion of the genetic relationship among pathogens using fluorescent amplified length fragment polymorphism (f-AFLP) microbial fingerprinting. We present the results of one year's experience with the system, which identified a total, of 306 suspicious HAls. Of these, 281 (92%) were 'confirmed' by clinical evidence, 16 (5%) were considered to be simple colonization and the tatter nine (3%) were archived as 'not answered' because of the absence of the physician's cooperation. There were seven suspected outbreaks; of these, f-AFLP analysis confirmed the clonal relationship among the isolates in four cases: outbreak 1 (four isolates of Pseudomonas aeruginosa), outbreak 2 (three Escherichia coli isolates), outbreak 6 (two Candida parapsilosis isolates) and outbreak 7 (30 ESPL-producing Klebsiella pneumoniae subsp. pneumoniae). Based on our results, we conclude that the combination of VIGI@ct (R) and f-AFLP is useful in the rapid assessment of an outbreak due to Gram-positive or Gramnegative bacteria and yeasts. (C) 2007 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved

    A new qualitative RT-PCR assay detecting SARS-CoV-2

    Get PDF
    The world is facing an exceptional pandemic caused by SARS-CoV-2. To allow the diagnosis of COVID-19 infections, several assays based on the real-time PCR technique have been proposed. The requests for diagnosis are such that it was immediately clear that the choice of the most suitable method for each microbiology laboratory had to be based, on the one hand, on the availability of materials, and on the other hand, on the personnel and training priorities for this activity. Unfortunately, due to high demand, the shortage of commercial diagnostic kits has also become a major problem. To overcome these critical issues, we have developed a new qualitative RT-PCR probe. Our system detects three genes—RNA-dependent RNA polymerase (RdRp), envelope (E) and nucleocapsid (N)—and uses the β-actin gene as an endogenous internal control. The results from our assay are in complete agreement with the results obtained using a commercially available kit, except for two samples that did not pass the endogenous internal control. The coincidence rate was 0.96. The LoD of our assay was 140 cp/reaction for N and 14 cp/reaction for RdRp and E. Our kit was designed to be open, either for the nucleic acid extraction step or for the RT-PCR assay, and to be carried out on several instruments. Therefore, it is free from the industrial production logics of closed systems, and conversely, it is hypothetically available for distribution in large quantities to any microbiological laboratory. The kit is currently distributed worldwide (called MOLgen-COVID-19; Adaltis). A new version of the kit for detecting the S gene is also available
    corecore