8 research outputs found
Genetic Testing in Acute and Chronic Pancreatitis
Purpose of review
Premature intracellular activation of pancreatic zymogens leads to the initiation of pancreatitis, which in up to 25% leads to chronic tissue destruction, exocrine and endocrine organ failure, and a moderate increased risk of pancreatic cancer development. Whereas in many cases, the trigger of organ damage is identified, diagnostic workup in a significant number of patients does not reveal the underlying etiology of pancreatic inflammation. In these cases, alterations in different pancreatic susceptibility genes have been described to be directly or indirectly involved in disease development. In this review, we want to give an update on the most important pancreatitis risk genes and their impact on clinical diagnostics and risk stratification as well as possible treatment options.
Recent findings
Genetic testing is not routinely implemented in the diagnostic workup of acute or chronic pancreatitis, as most genetic variations are not considered causative for pancreatitis development but confer increased susceptibility and genetic testing rarely changes disease management. However, in patients with recurrent pancreatitis episodes of unknown etiology after intensive diagnostic work-up, in patients with a family history of pancreatitis, relatives of patients with hereditary pancreatitis, and patients with disease onset at young age, genetic testing and counseling is recommended. Besides well-established susceptibility genes such as PRSS1, SPINK1, CPA1, and CFTR, additional genes such as TRPV6 and rare genetic alterations in established risk genes have been recently identified which significantly contribute to the risk of pancreatitis, involving different molecular mechanisms.
Summary
When genetic testing is considered, we propose screening at least for PRSS1, SPINK1, CPA1, and CFTR gene variants. The emergence of next-generation sequencing methods could also render larger gene panels possible and clinically meaningful to detect rare variants with high-risk phenotypes. Here we summarize, evaluate, and convey in the form of practical recommendations the current level of knowledge with respect to definition, etiology, and genetic diagnostics of all forms of inherited pancreatitis
CCL1 is a major regulatory T cell attracting factor in human breast cancer
BACKGROUND Regulatory T cells (Treg) suppress cytotoxic T cell anti-tumoral immune responses and thereby promote tumor progression. Prevention of intratumoral Treg accumulation by inhibition of their migration to the tumor microenvironment is a promising therapeutic strategy. The aim of this study was to identify the role of the two major Treg-attracting chemokines CCL1 and CCL22 in human breast cancer.
METHODS One hundred ninety-nine tissue samples of patients with invasive breast cancer were stained for CCL1 and CCL22 by immunohistochemistry. Chemokine expression and tumor infiltration by regulatory T cells, determined by expression of the transcription factor FoxP3, were quantified and their correlation to clinical features was statistically analyzed.
RESULTS Both CCL1 and CCL22 were expressed in most breast cancer tissues. CCL1 was significantly over-expressed in invasive breast cancer as compared to normal breast tissue. CCL1, but surprisingly not CCL22, showed a significant correlation with the number of tumor-infiltrating FoxP3+ Treg (p< 0.001). High numbers of intratumoral CCL1 expressing cells were related to high grade tumors (G4) and a positive estrogen receptor (ER) status whereas high CCL22 expression was generally seen in lower grade tumors. The median survival of 88 patients with high intratumoral CCL1 expression was 37 months compared to 50 months for the 87 patients with low CCL1 levels, this trend was however not statistically significant.
CONCLUSIONS We found a high expression of CCL1 in human breast cancer. CCL1 significantly correlated with the infiltration of immunosuppressive FoxP3+ Treg, that are known to negatively affect survival. Thus, CCL1 may serve as prognostic marker and novel therapeutic target in breast cancer
Stringent monitoring can decrease mortality of immune checkpoint inhibitor induced cardiotoxicity
BackgroundImmune checkpoint inhibitor (ICI)-induced myocarditis is a rare immune-related adverse event (irAE) with a fatality rate of 40%–46%. However, irMyocarditis can be asymptomatic. Thus, improved monitoring, detection and therapy are needed. This study aims to generate knowledge on pathogenesis and assess outcomes in cancer centers with intensified patient management.MethodsPatients with cardiac irAEs from the SERIO registry (www.serio-registry.org) were analyzed for demographics, ICI-related information (type of ICI, therapy line, combination with other drugs, onset of irAE, and tumor response), examination results, irAE treatment and outcome, as well as oncological endpoints. Cardiac biopsies of irMyocarditis cases (n = 12) were analyzed by Nanostring and compared to healthy heart muscle (n = 5) and longitudinal blood sampling was performed for immunophenotyping of irMyocarditis-patients (n = 4 baseline and n = 8 during irAE) in comparison to patients without toxicity under ICI-therapy (n = 4 baseline and n = 7 during ICI-therapy) using flow cytometry.ResultsA total of 51 patients with 53 cardiac irAEs induced by 4 different ICIs (anti-PD1, anti-PD-L1, anti-CTLA4) were included from 12 centers in 3 countries. Altogether, 83.0% of cardiac irAEs were graded as severe or life-threatening, and 11.3% were fatal (6/53). Thus, in centers with established consequent troponin monitoring, work-up upon the rise in troponin and consequent treatment of irMyocarditis with corticosteroids and –if required–second-line therapy mortality rate is much lower than previously reported. The median time to irMyocarditis was 36 days (range 4–1,074 days) after ICI initiation, whereas other cardiotoxicities, e.g. asystolia or myocardiopathy, occurred much later. The cytokine-mediated signaling pathway was differentially regulated in myocardial biopsies as compared to healthy heart based on enrichment Gene Ontology analysis. Additionally, longitudinal peripheral blood mononuclear cell (PBMC) samples from irMyocarditis-patients indicated ICI-driven enhanced CD4+ Treg cells and reduced CD4+ T cells. Immunophenotypes, particularly effector memory T cells of irMyocarditis-patients differed from those of ICI-treated patients without side effects. LAG3 expression on T cells and PD-L1 expression on dendritic cells could serve as predictive indicators for the development of irMyocarditis.ConclusionInterestingly, our cohort shows a very low mortality rate of irMyocarditis-patients. Our data indicate so far unknown local and systemic immunological patterns in cardiotoxicity
TRAIL receptor targeting agents potentiate PARP inhibitor efficacy in pancreatic cancer independently of BRCA2 mutation status
Chemotherapy, the standard treatment for pancreatic ductal adenocarcinoma (PDAC), has only a modest effect on the outcome of patients with late-stage disease. Investigations of the genetic features of PDAC have demonstrated a frequent occurrence of mutations in genes involved in homologous recombination (HR), especially in the breast cancer susceptibility gene 2 (BRCA2). Olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor, is approved as a maintenance treatment for patients with advanced PDAC with germline BRCA1/2 mutations following a platinum-containing first-line regimen. Limitations to the use of PARP inhibitors are represented by the relatively small proportion of patients with mutations in BRCA1/2 genes and the modest capability of these substances of inducing objective response. We have previously shown that pancreatic cancer with BRCA2 mutations exhibits a remarkably enhanced sensitivity towards tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) receptor-stimulating agents. We thus aimed to investigate the effect of combined treatment with PARP inhibitors and TRAIL receptor-stimulating agents in pancreatic cancer and its dependency on the BRCA2 gene status. The respective effects of TRAIL-targeting agents and the PARP inhibitor olaparib or of their combination were assessed in pancreatic cancer cell lines and patient-derived organoids. In addition, BRCA2-knockout and -complementation models were investigated. The effects of these agents on apoptosis, DNA damage, cell cycle, and receptor surface expression were assessed by immunofluorescence, Western blot, and flow cytometry. PARP inhibition and TRAIL synergized to cause cell death in pancreatic cancer cell lines and PDAC organoids. This effect proved independent of BRCA2 gene status in three independent models. Olaparib and TRAIL in combination caused a detectable increase in DNA damage and a concentration-dependent cell cycle arrest in the G2/M and S cell cycle phases. Olaparib also significantly increased the proportion of membrane-bound death receptor 5. Our results provide a preclinical rationale for the combination of PARP inhibitors and TRAIL receptor agonists for the treatment of pancreatic cancer and suggest that the use of PARP inhibitors could be extended to patients without BRCA2 mutations if used in combination with TRAIL agonists
CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes
Chemokines have crucial roles in organ development and orchestration of leukocyte migration. The chemokine CCL22 is expressed constitutively at high levels in the lymph node, but the functional significance of this expression is so far unknown. Studying a newly established CCL22-deficient mouse, we demonstrate that CCL22 expression by dendritic cells (DCs) promotes the formation of cell-cell contacts and interaction with regulatory T cells (T reg) through their CCR4 receptor. Vaccination of CCL22-deficient mice led to excessive T cell responses that were also observed when wild-type mice were vaccinated using CCL22-deficient DCs. Tumor-bearing mice with CCL22 deficiency showed prolonged survival upon vaccination, and further, CCL22-deficient mice had increased susceptibility to inflammatory disease. In conclusion, we identify the CCL22-CCR4 axis as an immune checkpoint that is crucial for the control of T cell immunity
Mutation-specific CAR T cells as precision therapy for IGLV3-21R110 expressing high-risk chronic lymphocytic leukemia
Abstract The concept of precision cell therapy targeting tumor-specific mutations is appealing but requires surface-exposed neoepitopes, which is a rarity in cancer. B cell receptors (BCR) of mature lymphoid malignancies are exceptional in that they harbor tumor-specific-stereotyped sequences in the form of point mutations that drive self-engagement of the BCR and autologous signaling. Here, we use a BCR light chain neoepitope defined by a characteristic point mutation (IGLV3-21R110) for selective targeting of a poor-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. We develop murine and humanized CAR constructs expressed in T cells from healthy donors and CLL patients that eradicate IGLV3-21R110 expressing cell lines and primary CLL cells, but neither cells expressing the non-pathogenic IGLV3-21G110 light chain nor polyclonal healthy B cells. In vivo experiments confirm epitope-selective cytolysis in xenograft models in female mice using engrafted IGLV3-21R110 expressing cell lines or primary CLL cells. We further demonstrate in two humanized mouse models lack of cytotoxicity towards human B cells. These data provide the basis for advanced approaches of resistance-preventive and biomarker-guided cellular targeting of functionally relevant lymphoma driver mutations sparing normal B cells