712 research outputs found

    Recycling of Eukaryotic Posttermination Ribosomal Complexes

    Get PDF
    SummaryAfter translational termination, mRNA and P site deacylated tRNA remain associated with ribosomes in posttermination complexes (post-TCs), which must therefore be recycled by releasing mRNA and deacylated tRNA and by dissociating ribosomes into subunits. Recycling of bacterial post-TCs requires elongation factor EF-G and a ribosome recycling factor RRF. Eukaryotes do not encode a RRF homolog, and their mechanism of ribosomal recycling is unknown. We investigated eukaryotic recycling using post-TCs assembled on a model mRNA encoding a tetrapeptide followed by a UAA stop codon and report that initiation factors eIF3, eIF1, eIF1A, and eIF3j, a loosely associated subunit of eIF3, can promote recycling of eukaryotic post-TCs. eIF3 is the principal factor that promotes splitting of posttermination ribosomes into 60S subunits and tRNA- and mRNA-bound 40S subunits. Its activity is enhanced by eIFs 3j, 1, and 1A. eIF1 also mediates release of P site tRNA, whereas eIF3j ensures subsequent dissociation of mRNA

    Analysis of optical magnetoelectric effect in GaFeO_3

    Full text link
    We study the optical absorption spectra in a polar ferrimagnet GaFeO_3. We consider the E1, E2 and M1 processes on Fe atoms. It is shown that the magnetoelectric effect on the absorption spectra arises from the E1-M1 interference process through the hybridization between the 4p and 3d states in the noncentrosymmetry environment of Fe atoms. We perform a microscopic calculation of the spectra on a cluster model of FeO_6 consisting of an octahedron of O atoms and an Fe atom displaced from the center with reasonable values for Coulomb interaction and hybridization. We obtain the magnetoelectric spectra, which depend on the direction of magnetization, as a function of photon energy in the optical region 1.0-2.5 eV, in agreement with the experiment.Comment: 18 pages, 5 figure

    Optimization of methods of quality control drug steroid structure for example glucocorticosteroid

    Get PDF
    This paper presents an original method for the analysis of corticosteroids with the use of reversed-phase high performance liquid chromatography. A mixture of 1% aqueous formic acid and ethyl alcohol at a ratio of 10 to 90 was taken as an eluting system for corticosteroids. This ratio of solvents in the mobile phase ensures control of the rate of movement of corticosteroids in the column. Since corticosteroids are freely soluble in alcohol, using 90% of this solvent in the mobile phase ensured optimum retention time of these compound
    corecore