19 research outputs found

    Deterioration in Sulfuric Acid of Cement Pastes incorporating High CaO and Low CaO Fly Ashes

    Get PDF
    This research studies the deterioration in sulfuric acid solution (pH 1) of cement pastes with fly ash. Effects of three major factors affecting the acid attack behavior are described. First, for the water to binder ratio, it was found that cement pastes with a higher water to binder ratio (w/b of 0.40) have a lower mass loss in sulfuric acid solution than those with a lower water to binder ratio (w/b of 0.25). In addition to the known mechanism of higher porosity in higher w/b pastes which makes the higher w/b pastes to be able to accommodate more gypsum, another mechanism was described based on the different abilities of calcium ion and sulfate ion to diffuse out of and into the pastes, respectively. Second, the type and content of binder provide a great influence on the degradation of cement pastes. The test of cement pastes with 30% and 50% fly ash replacement demonstrated that the fly ashes decrease the deterioration of pastes in sulfuric acid solution. In addition, it was observed that fly ash with low calcium oxide provided better resistance to sulfuric acid attack than fly ash with high calcium oxide did. Finally, the characteristics of the deterioration of paste specimens due to sulfuric acid attack was found to correlate well with CaO/SiO2 ratio

    Carbamate Synthesis on Pd/C Catalysts: Gas-Solid versus Slurry Processes

    No full text
    Carbamate synthesis has been studied over NaI−Pd/C in slurry, gas−solid, and tubular reactors at 373−438 K and 0.41−7.61 MPa. The gas−solid carbamate synthesis process in which the CO, O2, methanol, and aniline reactants are present in the gas phase and the catalyst is in solid form occurs at a significantly higher rate than the slurry-phase synthesis in which CO and O2 dissolve in the liquid methanol/aniline mixture. The high rate of the gas−solid carbamate synthesis compared with that of the slurry-phase synthesis can be attributed to (i) the intimate contact between the NaI promoter and the Pd on the carbon surface, (ii) the absence of solubility limitations in the gas−solid synthesis, and (iii) the slowing of the sintering of the Pd particles. Reaction pathway studies show that the direct oxidative carbonylation of aniline with methanol is the most effective pathway for carbamate synthesis. A low-cost, environmentally benign carbamate synthesis for the replacement of the isocyanate synthesis from phosgene/amine can be developed by coupling the high rate of the gas−solid synthesis with its intrinsic advantage of ease of catalyst recovery

    Molecular Dynamic Simulation Analysis on the Inclusion Complexation of Plumbagin with β-Cyclodextrin Derivatives in Aqueous Solution

    No full text
    Stable encapsulation of medically active compounds can lead to longer storage life and facilitate the slow-release mechanism. In this work, the dynamic and molecular interactions between plumbagin molecule with β-cyclodextrin (BCD) and its two derivatives, which are dimethyl-β-cyclodextrin (MBCD), and 2-O-monohydroxypropyl-β-cyclodextrin (HPBCD) were investigated. Molecular dynamics simulations (MD) with GLYCAM-06 and AMBER force fields were used to simulate the inclusion complex systems under storage temperature (4 °C) in an aqueous solution. The simulation results suggested that HPBCD is the best encapsulation agent to produce stable host–guest binding with plumbagin. Moreover, the observation of the plumbagin dynamic inside the binding cavity revealed that it tends to orient the methyl group toward the wider rim of HPBCD. Therefore, HPBCD is a decent candidate for the preservation of plumbagin with a promising longer storage life and presents the opportunity to facilitate the slow-release mechanism

    Structural Investigation of Beta-Cyclodextrin Complexes with Cannabidiol and Delta-9-Tetrahydrocannabinol in 1:1 and 2:1 Host-Guest Stoichiometry: Molecular Docking and Density Functional Calculations

    No full text
    The complexation of β-cyclodextrin (β-CD) with cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) was investigated using molecular docking and M062X/6-31G(d,p) calculations. The calculations suggested two possible complex formations of 1:1 and 2:1 host-guest molecular ratio of β-CD with CBD and THC. The preferred orientation of all complexes in this study exhibited the hydrogen bonding between hydroxy-substituted benzene ring of CBD and THC with the β-CD’s secondary hydroxy groups at the wide rim. The calculated complexation energies indicate that formation of the 2:1 complexes (−83.53 to −135.36 kcal/mol) was more energetically favorable and chemically stable than the 1:1 complexes (−30.00 to −34.92 kcal/mol). However, the deformation energies of the host and the guest components in the 2:1 complexes (37.47–96.91 kcal/mol) are much higher than those in the 1:1 complexes (3.49–8.69 kcal/mol), which means the formation processes of the 2:1 complexes are more difficult due to the rigidity of the dimeric β-CDs. Therefore, the inclusion complexes of β-CD with CBD and THC are more likely to be in 1:1 host-guest ratio than in 2:1 molecular ratio. The results of this study supported the experimental results that the complexation constant of 1:1 β-CD/CBD (Ks = 300 M−1) is greater than that of 2:1 β-CDs/CBD (Kss = 0.833 M−1). Altogether, this study introduced the fitting parameters that could indicate the stability of the molecular fits in complex formation of each stoichiometry host-guest ratio, which are important for the assessment of the inclusion mechanisms as well as the relationships of reactants and products in chemical reactions

    Structural and Dynamics Perspectives on the Binding of Substrate and Inhibitors in Mycobacterium tuberculosis DHFR

    No full text
    Dihydrofolate reductase (DHFR), an essential enzyme in the folate pathway, is a potential target for new anti-tuberculosis drugs. Fifteen crystal structures of Mycobacterium tuberculosis DHFR complexed with NADPH and various inhibitors are available in the RCSB Protein Data Bank, but none of them is a substrate binding structure. Therefore, we performed molecular dynamics simulations on ternary complexes of M. tuberculosis DHFR:NADPH with a substrate (dihydrofolate) and each of three competitive inhibitors in 2,4-diaminopyrimidine series (P1, P157, and P169), in order to gain insight into the inhibition-mechanism of DHFR in the folate pathway. The binding energy and thermodynamics values of each system were calculated by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method. The dynamics of the enzyme and the motion of each amino acid residue at the active site were examined. The key factors that promote the binding of P157 and P169 on M. tuberculosis DHFR (mtbDHFR) reveal opportunities for using these compounds as novel anti-tuberculosis drugs

    Molecular Dynamic Simulation Analysis on the Inclusion Complexation of Plumbagin with β-Cyclodextrin Derivatives in Aqueous Solution

    No full text
    Stable encapsulation of medically active compounds can lead to longer storage life and facilitate the slow-release mechanism. In this work, the dynamic and molecular interactions between plumbagin molecule with β-cyclodextrin (BCD) and its two derivatives, which are dimethyl-β-cyclodextrin (MBCD), and 2-O-monohydroxypropyl-β-cyclodextrin (HPBCD) were investigated. Molecular dynamics simulations (MD) with GLYCAM-06 and AMBER force fields were used to simulate the inclusion complex systems under storage temperature (4 °C) in an aqueous solution. The simulation results suggested that HPBCD is the best encapsulation agent to produce stable host–guest binding with plumbagin. Moreover, the observation of the plumbagin dynamic inside the binding cavity revealed that it tends to orient the methyl group toward the wider rim of HPBCD. Therefore, HPBCD is a decent candidate for the preservation of plumbagin with a promising longer storage life and presents the opportunity to facilitate the slow-release mechanism

    Catalytic Activity Enhancement of Cu-Zn-Based Catalyst for Methanol Steam Reforming with Magnetic Inducement

    No full text
    Magnetic inducement was applied during metal loading to enhance Cu-Zn catalysts for methanol steam reforming in the temperature range of 200–300 °C. The supports used in this study were the γ-Al2O3 support and CeO2-Al2O3 supports prepared under different magnetic environments. Cu-Zn loading between the north and south poles (N-S) on the CeO2-Al2O3 support, prepared between two north poles (N-N), led to the highest H2 production at 300 °C (2796 ± 76 µmol/min), which is triple that of Cu-Zn/CeO2-Al2O3 prepared without magnetic inducement and ~11-fold the activity of the Cu-Zn/Al2O3 reference catalyst. The N-S magnetic environment during metal loading leads to lower reduction temperatures and larger Cu(1+):Cu(2+) ratio. These results showed that the pole arrangement of magnets during metal loading could affect the catalytic activity of the Cu-Zn catalyst owing to its influence on the reducibility and the oxidation state of Cu active metal

    Synthesis of Carbamate through Low Pressure Heterogeneous Oxidative Carbonylation of Amines

    No full text
    The process disclosed herein satisfies the need in the art for an industrially viable oxidative carbonylation catalytic system, and is capable of producing carbamates at a significantly higher rate than those processes reported in journal and patent literature. This reaction process takes place via a reaction mechanism that does not involve drastic conditions. Specifically, the catalytic system of the present invention employs Group VIII metal catalysts and/or copper-based catalysts with halide promoters to produce carbamates through heterogeneous oxidative carbonylation at atmospheric pressure and relatively non-drastic temperatures in a gas-solid carbonylation process
    corecore