2 research outputs found

    Using BBN in cosmological parameter extraction from CMB: a forecast for Planck

    Full text link
    Data from future high-precision Cosmic Microwave Background (CMB) measurements will be sensitive to the primordial Helium abundance YpY_p. At the same time, this parameter can be predicted from Big Bang Nucleosynthesis (BBN) as a function of the baryon and radiation densities, as well as a neutrino chemical potential. We suggest to use this information to impose a self-consistent BBN prior on YpY_p and determine its impact on parameter inference from simulated Planck data. We find that this approach can significantly improve bounds on cosmological parameters compared to an analysis which treats YpY_p as a free parameter, if the neutrino chemical potential is taken to vanish. We demonstrate that fixing the Helium fraction to an arbitrary value can seriously bias parameter estimates. Under the assumption of degenerate BBN (i.e., letting the neutrino chemical potential ξ\xi vary), the BBN prior's constraining power is somewhat weakened, but nevertheless allows us to constrain ξ\xi with an accuracy that rivals bounds inferred from present data on light element abundances.Comment: 14 pages, 4 figures; v2: minor changes, matches published versio

    WMAP 5-year constraints on lepton asymmetry and radiation energy density: Implications for Planck

    Full text link
    In this paper we set bounds on the radiation content of the Universe and neutrino properties by using the WMAP-5 year CMB measurements complemented with most of the existing CMB and LSS data (WMAP5+All),imposing also self-consistent BBN constraints on the primordial helium abundance. We consider lepton asymmetric cosmological models parametrized by the neutrino degeneracy parameter and the variation of the relativistic degrees of freedom, due to possible other physical processes occurred between BBN and structure formation epochs. We find that WMAP5+All data provides strong bounds on helium mass fraction and neutrino degeneracy parameter that rivals the similar bounds obtained from the conservative analysis of the present data on helium abundance. We also find a strong correlation between the matter energy density and the redshift of matter-radiation equality, z_re, showing that we observe non-zero equivalent number of relativistic neutrinos mainly via the change of the of z_re, rather than via neutrino anisotropic stress claimed by the WMAP team. We forecast that the CMB temperature and polarization measurements observed with high angular resolutions and sensitivities by the future Planck satellite will reduce the errors on these parameters down to values fully consistent with the BBN bounds
    corecore