181 research outputs found
Ownership of co-creation assets: driving B2B value propositions in the service economy
The benefits of specialization have been driving the rise of the service economy and pushing capability frontiers and economic growth. In service economies, almost any activity, asset, and skill can be bought on competitive markets, making it harder to build competitive advantage on any of those inputs. Against that background, the question emerges what constitutes sustainable value propositions of service providers. Drawing on an emerging stream of research on the non-ownership value of services, we argue that service providers create value by taking on ownership of service assets and thereby transform uncertainty of value creation into economic opportunities. In our view, service providers offer the essential value proposition of transforming their clients’ uncertainty downsides into opportunities related to assets such as vehicles, real estate, equipment and computing platforms. Clients benefit by delegating ownership of assets to the domain of a service provider. In turn, clients can focus their investment on their most promising assets. Service providers create sustainable competitive advantage by assuming ownership and excelling at the management of (a) unique physical assets, (b) unique intangible assets and (c) maintaining an appropriate architecture of social capital through customer relationships and business ecosystems
Two-body decays in the minimal 331 model
The two-body decays of the extra neutral boson Z_2 predicted by the minimal
331 model are analyzed. At the three-level it can decay into standard model
particles as well as exotic quarks and the new gauge bosons predicted by the
model. The decays into a lepton pair are strongly suppressed, with and . In the bosonic
sector, Z_2 would decay mainly into a pair of bilepton gauge bosons, with a
branching ratio below the 0.1 level. The Z_2 boson has thus a leptophobic and
bileptophobic nature and it would decay dominantly into quark pairs. The
anomaly-induced decays and , which occurs
at the one-loop level are studied. It is found that and at most. As for the and decays, with H a relatively light Higgs boson, they
are induced via Z'-Z mixing. It is obtained that
and . We also examine the flavor changing neutral
current decays and , which may have branching
fractions as large as and , respectively, and thus may be of
phenomenological interest.Comment: 14 pages, 3 figures, submitted to Physical Review
Tensor Correlations Measured in 3He(e,e'pp)n
We have measured the 3He(e,e'pp)n reaction at an incident energy of 4.7 GeV
over a wide kinematic range. We identified spectator correlated pp and pn
nucleon pairs using kinematic cuts and measured their relative and total
momentum distributions. This is the first measurement of the ratio of pp to pn
pairs as a function of pair total momentum, . For pair relative
momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low and
rises to approximately 0.5 at large . This shows the dominance of
tensor over central correlations at this relative momentum.Comment: 4 pages, 4 figures, submitted to PR
Measurement of the nuclear multiplicity ratio for hadronization at CLAS
The influence of cold nuclear matter on lepto-production of hadrons in
semi-inclusive deep inelastic scattering is measured using the CLAS detector in
Hall B at Jefferson Lab and a 5.014 GeV electron beam. We report the
multiplicity ratios for targets of C, Fe, and Pb relative to deuterium as a
function of the fractional virtual photon energy transferred to the
and the transverse momentum squared of the . We find that the
multiplicity ratios for are reduced in the nuclear medium at high
and low , with a trend for the transverse momentum to be
broadened in the nucleus for large .Comment: Submitted to Phys. Lett.
Coherent Photoproduction of pi^+ from 3^He
We have measured the differential cross section for the
He reaction. This reaction was studied using
the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons
produced with the Hall-B bremsstrahlung tagging system in the energy range from
0.50 to 1.55 GeV were incident on a cryogenic liquid He target. The
differential cross sections for the He
reaction were measured as a function of photon-beam energy and pion-scattering
angle. Theoretical predictions to date cannot explain the large cross sections
except at backward angles, showing that additional components must be added to
the model.Comment: 11 pages, 16 figure
Demonstration of a novel technique to measure two-photon exchange effects in elastic scattering
The discrepancy between proton electromagnetic form factors extracted using
unpolarized and polarized scattering data is believed to be a consequence of
two-photon exchange (TPE) effects. However, the calculations of TPE corrections
have significant model dependence, and there is limited direct experimental
evidence for such corrections. We present the results of a new experimental
technique for making direct comparisons, which has the potential to
make precise measurements over a broad range in and scattering angles. We
use the Jefferson Lab electron beam and the Hall B photon tagger to generate a
clean but untagged photon beam. The photon beam impinges on a converter foil to
generate a mixed beam of electrons, positrons, and photons. A chicane is used
to separate and recombine the electron and positron beams while the photon beam
is stopped by a photon blocker. This provides a combined electron and positron
beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen
target. The large acceptance CLAS detector is used to identify and reconstruct
elastic scattering events, determining both the initial lepton energy and the
sign of the scattered lepton. The data were collected in two days with a
primary electron beam energy of only 3.3 GeV, limiting the data from this run
to smaller values of and scattering angle. Nonetheless, this measurement
yields a data sample for with statistics comparable to those of the
best previous measurements. We have shown that we can cleanly identify elastic
scattering events and correct for the difference in acceptance for electron and
positron scattering. The final ratio of positron to electron scattering:
for GeV and
Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments
We report on the measurement of inclusive electron scattering off a carbon
target performed with CLAS at Jefferson Laboratory. A combination of three
different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an
invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum
transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous
measurements of the inclusive electron scattering off proton and deuteron,
which cover a similar continuous two-dimensional region of Q2 and Bjorken
variable x, permit the study of nuclear modifications of the nucleon structure.
By using these, as well as other world data, we evaluated the F2 structure
function and its moments. Using an OPE-based twist expansion, we studied the
Q2-evolution of the moments, obtaining a separation of the leading-twist and
the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist
contributions to the F2 moments exhibits the well known EMC effect, compatible
with that discovered previously in x-space. The total higher-twist term in the
carbon nucleus appears, although with large systematic uncertainites, to be
smaller with respect to the deuteron case for n<7, suggesting partial parton
deconfinement in nuclear matter. We speculate that the spatial extension of the
nucleon is changed when it is immersed in the nuclear medium.Comment: 37 pages, 15 figure
Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive production
We present studies of single-spin asymmetries for neutral pion
electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV
polarized electrons from an unpolarized hydrogen target, using the CEBAF Large
Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator
Facility. A substantial amplitude has been measured in the
distribution of the cross section asymmetry as a function of the azimuthal
angle of the produced neutral pion. The dependence of this amplitude
on Bjorken and on the pion transverse momentum is extracted with
significantly higher precision than previous data and is compared to model
calculations.Comment: to be submitted PL
Partial wave analysis of the reaction gamma p -> p omega$ and the search for nucleon resonances
An event-based partial wave analysis (PWA) of the reaction gamma p -> p omega
has been performed on a high-statistics dataset obtained using the CLAS at
Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This
analysis benefits from access to the world's first high precision spin density
matrix element measurements, available to the event-based PWA through the decay
distribution of omega-> pi+ pi - pi0. The data confirm the dominance of the
t-channel pi0 exchange amplitude in the forward direction. The dominant
resonance contributions are consistent with the previously identified states
F[15](1680) and D[13](1700) near threshold, as well as the G[17](2190) at
higher energies. Suggestive evidence for the presence of a J(P)=5/2(+) state
around 2 GeV, a "missing" state, has also been found. Evidence for other states
is inconclusive
- …