12 research outputs found

    Protein interference for regulation of gene expression in plants

    Get PDF
    Transcription factors (TFs) play a central role in the gene regulation associated with a plant's development and its response to the environmental factors. The work of TFs is well regulated at each stage of their activities. TFs usually consist of three protein domains required for DNA binding, dimerization, and transcriptional regulation. Alternative splicing (AS) produces multiple proteins with varying composition of domains. Recent studies have shown that AS of some TF genes form small proteins (small interfering peptide/small interfering protein, siPEP/siPRoT), which lack one or more domains and negatively regulate target TFs by the mechanism of protein interference (peptide interference/protein interference, PEPi/PROTi). The presence of an alternative form for the transcription factor CCA1 of Arabidopsis thaliana, has been shown to be involved in the regulation of the response to cold stress. For the PtFLC protein, one of the isoforms was found, which is formed as a result of alternative splicing and acts as a negative repressor, binding to the full-length TF PtFLC and therefore regulating the development of the Poncirus trifoliata. For A. thaliana, a FLM gene was found forming the FLM-б isoform, which acts as a dominant negative regulator and stimulates the development of the flower formation process due to the formation of a heterodimer with SVP TF. Small interfering peptides and proteins can actively participate in the regulation of gene expression, for example, in situations of stress or at different stages of plant development. Moreover, small interfering peptides and proteins can be used as a tool for fundamental research on the function of genes as well as for applied research for permanent or temporary knockout of genes. In this review, we have demonstrated recent studies related to siPEP/siPROT and their involvement in the response to various stresses, as well as possible ways to obtain small proteins

    Integrative Network Biology: Graph Prototyping for Co-Expression Cancer Networks

    Get PDF
    Network-based analysis has been proven useful in biologically-oriented areas, e.g., to explore the dynamics and complexity of biological networks. Investigating a set of networks allows deriving general knowledge about the underlying topological and functional properties. The integrative analysis of networks typically combines networks from different studies that investigate the same or similar research questions. In order to perform an integrative analysis it is often necessary to compare the properties of matching edges across the data set. This identification of common edges is often burdensome and computational intensive. Here, we present an approach that is different from inferring a new network based on common features. Instead, we select one network as a graph prototype, which then represents a set of comparable network objects, as it has the least average distance to all other networks in the same set. We demonstrate the usefulness of the graph prototyping approach on a set of prostate cancer networks and a set of corresponding benign networks. We further show that the distances within the cancer group and the benign group are statistically different depending on the utilized distance measure

    Understanding Marine Mussel Adhesion

    Get PDF
    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion
    corecore