15 research outputs found

    A Reappraisal of the 1968 Valle Del Belice Seismic Sequence (Western Sicily): A case study of Intensity Assessment with Cumulated Damage Effects

    Get PDF
    In 1968, six earthquakes with magnitude between 5.1 and 6.4 destroyed or heavily damaged several towns in the Valle del Belìce(western Sicily), causing some three hundred fatalities. There have been some critical issues in the intensity assessment however in the macroseismic studies produced over the years , since the MCS scale was used as an estimation of shaking rather than a representation of the damage scenario; in practise, intensity was assigned for each earthquake of the sequence disregarding the effect of the cumulative damage. The case-study of the 2016-17 earthquakes in Central Italy reflected the difficulty in estimating the intensity in localities repeatedly hit by strong shocks, producing macroseismic parameters (epicentre, magnitude) inconsistent with the instrumental ones. As for the 1968 Valle del Belìcesequence, the Parametric Catalogue of Italian Earthquakes CPTI15 reports the macroseismic parameters, owing to the inadequacy of the seismic network operating in Italy in that period. Aware of the issues related to epicentre locations and magnitudes calculated by the existing macroseismic datasets, here we propose a reappraisal of the 1968 earthquakes following a methodology tested during the 2016-17 seismic sequence in Central Italy. By a new analysis of the primary sources, we reconstruct the evolution of the damage scenario during the sequence and assess intensity by using the European Macroseismic Scale EMS-98; the new macroseismic parameters are finally compared with the ones of the CPTI15 catalogue. Lastly, we propose a procedure for minimizing the magnitude overestimation in case of seismic sequences, based on the computation of the total seismic moment M0

    QUIN 2.0 - new release of the QUaternary fault strain INdicators database from the Southern Apennines of Italy

    Get PDF
    QUIN database integrates and organizes structural-geological information from published and unpublished sources to constrain deformation in seismotectonic studies. The initial release, QUIN1.0, comprised 3,339 Fault Striation Pairs, mapped on 445 sites exposed along the Quaternary faults of central Italy. The present Data Descriptor introduces the QUIN 2.0 release, which includes 4,297 Fault Striation Pairs on 738 Structural Sites from southern Italy. The newly investigated faults span ~500 km along the Apennines chain, with strikes transitioning from ~SE to ~SW and comprehensively details Fault Striation Pairs’ location, attitude, kinematics, and deformation axes. Additionally, it offers a shapefile of the fault traces hosting the data. The QUIN 2.0 release offers a significant geographic extension to the QUIN 1.0, with comprehensive description of local geometric-kinematic complexities of the regional pattern. The QUIN data may be especially relevant for constraining intra-Apennine potential seismogenic deformation patterns, where earthquake data only offer scattered or incomplete information. QUIN’s data will support studies aimed at enhancing geological understanding, hazard assessment and comprehension of fault rupture propagation and barriers

    Geomorphological and Morphometric Analyses of the Catanzaro Trough (Central Calabrian Arc, Southern Italy): Seismotectonic Implications

    No full text
    In this work, we investigated the landscape response to the recent activity of the faults affecting the Catanzaro Trough, a seismically active structural basin that developed transversally to the Calabrian Arc (Southern Italy) during the Neogene–Quaternary. We carried out a geomorphological and morphometric study of the drainage networks and basins intercepted by the Quaternary faults that were previously mapped through remote and field analyses. The study confirms the occurrence north of the Catanzaro Trough of a WNW–ESE-oriented left-lateral strike-slip fault system (here named the South Sila Piccola Fault System), which accommodates the differential SE-ward migration of the upper crustal sectors of the Calabrian Arc, and of a south-dipping WNW–ESE-oriented oblique fault system (the Lamezia-Catanzaro Fault System), characterized by a predominant normal component of movement. The latter delimits the Catanzaro Trough and accommodates the transition from a strike-slip regime to an extensional regime in the south. Inside the Catanzaro Trough, we detected for the first time a NNE–SSW-trending, WNW-dipping fault system (here named the Caraffa Fault System). This system contributes to accommodate the extension that occurs orthogonally to the southern sector of the Calabrian Arc. The geomorphological and morphometric analysis revealed the recent activity of these fault systems. In particular, the activity of the Caraffa Fault System is evidenced by the differential uplift and tilting of discrete areas inside the basin. Given its location, geometry, and kinematics, the Caraffa Fault System could be responsible for the occurrence of large historical earthquakes

    An extension of the fractional model for construction of asphalt binder master curve

    No full text
    Knowledge and prediction of viscoelastic behaviour of asphalt binder is of great interest in order to design asphalt mixtures for civil construction of road and airports with good performances. The capability of a fractional model – requiring a very limited number of parameters – to describe and predict the linear viscoelastic behaviour of asphalt binder subjected to sinusoidal oscillations is investigated. Experimental data of complex modulus, |G*|, and phase angle, δ, are used to validate the proposed constitutive model. Based on the proposed extension of a fractional model, complex modulus isotherms for a range of frequencies can be created simply starting from isochronals at frequency value of 1 Hz. Furthermore, a mathematical procedure derived from the same model is proposed in order to compute the shift factors and automatically create the master curve, thus avoiding further errors due to manual adjustments. This shifting procedure requires only a few isotherms to create a smooth master curve able to describe asphalt binder behaviour under a wide range of temperature and loading conditions. When the fractional model is adopted and the mathematical shifting procedure is applied, only a temperature sweep test at 1 Hz is needed in order to create complex modulus and phase angle master curves

    Integration of historical, archaeoseismic and paleoseismological data for the reconstruction of the early seismic history in Messina Strait (south Italy): the 1st and 4th centuries AD earthquakes

    No full text
    Historical accounts, archaeoseismic and paleoseismological evidence allowed us to reappraise two earthquakes affecting northeastern Sicily and southern Calabria in the 1st (probably between 14 and 37) and 4th (likely between 361 and 363) centuries AD, to obtain a better reconstruction of their effects and to reconsider their sources.The 1st century event damaged the area from Oppido (Calabria) to Tindari (Sicily), roughly that of the February 6, 1783 Calabria earthquake. The similitude of these earthquakes is further stressed by the fact that they generated tsunamis, as recorded by historical data and by the tsunami deposits found at Capo Peloro, the oldest dated 0-125 AD, the youngest linked to the 1783 event. These earthquakes could be related to the same Calabria seismic source: the Scilla fault. Northeastern Sicily and southern Calabria were also damaged by one or more earthquakes in the 4th century AD and several towns were rebuilt/restored at that time. The hit area roughly coincides with that of the Messina 1908 earthquake suggesting similar seismic sources for the events. However, because close in time, historical descriptions of the 4th century Sicilian earthquake were mixed with those of the 365 Crete earthquake that generated a basin-wide tsunami most likely reaching also the Sicilian coasts. Reevaluating location, size, damage area and tsunamigenic potential of these two earthquakes of the 1st and 4th centuries AD is relevant for reassessing the seismogenic and tsunamigenic potential of the faults around the Messina Strait and the seismic hazard of the affected areas

    Geomorphological and Morphometric Analyses of the Catanzaro Trough (Central Calabrian Arc, Southern Italy): Seismotectonic Implications

    No full text
    In this work, we investigated the landscape response to the recent activity of the faults affecting the Catanzaro Trough, a seismically active structural basin that developed transversally to the Calabrian Arc (Southern Italy) during the Neogene–Quaternary. We carried out a geomorphological and morphometric study of the drainage networks and basins intercepted by the Quaternary faults that were previously mapped through remote and field analyses. The study confirms the occurrence north of the Catanzaro Trough of a WNW–ESE-oriented left-lateral strike-slip fault system (here named the South Sila Piccola Fault System), which accommodates the differential SE-ward migration of the upper crustal sectors of the Calabrian Arc, and of a south-dipping WNW–ESE-oriented oblique fault system (the Lamezia-Catanzaro Fault System), characterized by a predominant normal component of movement. The latter delimits the Catanzaro Trough and accommodates the transition from a strike-slip regime to an extensional regime in the south. Inside the Catanzaro Trough, we detected for the first time a NNE–SSW-trending, WNW-dipping fault system (here named the Caraffa Fault System). This system contributes to accommodate the extension that occurs orthogonally to the southern sector of the Calabrian Arc. The geomorphological and morphometric analysis revealed the recent activity of these fault systems. In particular, the activity of the Caraffa Fault System is evidenced by the differential uplift and tilting of discrete areas inside the basin. Given its location, geometry, and kinematics, the Caraffa Fault System could be responsible for the occurrence of large historical earthquakes

    Evidence of active tectonics in the Augusta Basin (eastern Sicily, Italy) by Chirp sub-bottom sonar investigation

    No full text
    A Chirp sub-bottom sonar investigation was performed in the 150 km2 wideAugustaBasin, located in the eastern Sicily Ionian coast, a region repeatedly hit by strong earthquakes in historical time, with the end of identifying possible evidence of active tectonics. Seismostratigraphy shows two main reflectors: R1, formed between 60 ka and 19 ka BP, and R2 that is the top of the Holocene deposits. Morphobathymetry reveals two marine abrasion surfaces, Ms1 and Ms2 that are related to the 35 ka and 25 ka BP marine high stills, respectively. This study highlights that R1 and the onlapping Holocene sediments are affected by normal and probably strike-slip faulting. A set of NE-SW striking normal faults represents the oldest system, because they dislocate R1 but not the Holocene deposit. NNW-SSE striking extensional faults show more recent activity since they displace Ms2, the Holocene sequence and cause seafloor up-warping. NE-SW normal faults produce asymmetric basins where the Holocene deposits form wedged bodies. ENE-WSW left-lateral faults dissect a paleo-island, Ms2 and the NNW-SSE fault system. Moreover, seismically induced  slumps involving the Holocene sediments, are found at the foot of some fault scarps. The presence of slumped bodies and active faults indicates ongoing deformation in the basin. Identified active faults are consistent with the main regional Malta Escarpment fault system, of which they can be considered as the incipient westernmost extension. This study supports the hypothesis that the Malta Escarpment is active and can be responsible for the regional seismicity

    Seismic Soil–Structure Interaction of Three Historical Buildings at the University of Catania (Sicily, Italy)

    No full text
    This study aimed to evaluate the soil–structure interaction of three historical buildings at the University of Catania using ambient noise. The results point out the different oscillation modes of Villa Cerami and Palazzo Boscarino buildings sharing a side. They also show different damping values, which are probably linked to the different rigidities of the structures, since one is a masonry building and the other is a reinforced concrete building without earthquake-resistant design. Villa Zingali Tetto, a reinforced concrete building without earthquake-resistant design, showed significant torsional effects, which may be related to the geometrical and material irregularities of the structure. Comparison of the buildings’ fundamental periods and site frequencies did not show potential soil–structure resonance effects. Modelling of the local seismic response confirms the obtained experimental site frequencies, suggesting that there are no important amplification factors. On the other hand, from both of the computed Spectral and Peak Ground Accelerations for an Mw 7.3 earthquake, intensity values were estimated for which Villa Cerami could suffer heavy structural damage, and Palazzo Boscarino and Villa Zingali Tetto very heavy non-structural damage. Additional engineering investigations, aimed at reducing seismic vulnerability, are necessary to improve the safety of these heritage buildings considering they are also used for educational purposes

    A Reappraisal of Seismicity and Eruptions of Pantelleria Island and the Sicily Channel (Italy)

    No full text
    Three main tectonic depressions (the Pantelleria, Linosa and Malta troughs), the expression of a continental rift, characterize the Sicily Channel, a region with recent volcanic activity attested by the Pantelleria and Linosa volcanic islands, as well as numerous seamounts. To understand the seismic and eruptive behaviour of this area, we compare historical and instrumental seismicity retrieved from catalogues with recordings from both a mobile seismic network and a permanent station deployed at Pantelleria. A review of historical eruptions affecting the Sicily Channel is also presented. Recent instrumental seismicity shows that the Sicily Channel is characterized by a low level of seismicity, with earthquakes mainly occurring as isolated events, rather than swarms as observed during the few documented eruptive periods. The results of a seismic survey in 2006–2007, as well as the signals recorded by a permanent station in 2010–2014, enable stating that also Pantelleria is characterized by a very low rate of seismicity. The available, though scant, historical information suggests a recurrence time of about a century for the volcanic activity and that eruptions are usually preceded by seismic swarms. In the only historical known eruption of Pantelleria, in addition to shocks, uplifting and increasing fumarole activity, were observed. Notwithstanding the lack of eruptions over the past century, and despite the low recent seismic rate, we believe that the geophysical monitoring of the Sicily Channel needs improving since it is an area of potentially high seismic and volcanic hazard given the presence of several active submarine eruptive centres.Published2475–24937T. Struttura della Terra e geodinamicaJCR Journa
    corecore