473 research outputs found

    Radiant energy absorption studies for laser propulsion

    Get PDF
    A study of the energy absorption mechanisms and fluid dynamic considerations for efficient conversion of high power laser radiation into a high velocity flow is presented. The objectives of the study are: (1) to determine the most effective absorption mechanisms for converting laser radiation into translational energy, and (2) to examine the requirements for transfer of the absorbed energy into a steady flow which is stable to disturbances in the absorption zone. A review of inverse Bremsstrahlung, molecular and particulate absorption mechanisms is considered and the steady flow and stability considerations for conversion of the laser power to a high velocity flow in a nozzle configuration is calculated. A quasi-one-dimensional flow through a nozzle was formulated under the assumptions of perfect gas

    Scoping review and bibliometric analysis of Big Data applications for Medication adherence: An explorative methodological study to enhance consistency in literature

    Get PDF
    Background: Medication adherence has been studied in different settings, with different approaches, and applying different methodologies. Nevertheless, our knowledge and efficacy are quite limited in terms of measuring and evaluating all the variables and components that affect the management of medication adherence regimes as a complex phenomenon. The study aim is mapping the state-of-the-art of medication adherence measurement and assessment methods applied in chronic conditions. Specifically, we are interested in what methods and assessment procedures are currently used to tackle medication adherence. We explore whether Big Data techniques are adopted to improve decision-making procedures regarding patients' adherence, and the possible role of digital technologies in supporting interventions for improving patient adherence and avoiding waste or harm. Methods: A scoping literature review and bibliometric analysis were used. Arksey and O'Malley's framework was adopted to scope the review process, and a bibliometric analysis was applied to observe the evolution of the scientific literature and identify specific characteristics of the related knowledge domain. Results: A total of 533 articles were retrieved from the Scopus academic database and selected for the bibliometric analysis. Sixty-one studies were identified and included in the final analysis. The Morisky medication adherence scale (36%) was the most frequently adopted baseline measurement tool, and cardiovascular/hypertension disease, the most investigated illness (38%). Heterogeneous findings emerged from the types of study design and the statistical methodologies used to assess and compare the results. Conclusions: Our findings reveal a lack of Big Data applications currently deployed to address or measure medication adherence in chronic conditions. Our study proposes a general framework to select the methods, measurements and the corpus of variables in which the treatment regime can be analyzed

    Aerosol mediated localized dissolution to enhance the electrical behavior and sensitivity of piezoresistive nanofiber-based flexible sensors

    Get PDF
    This work proposes the use of solvents in the form of small size droplets to improve the connections among nanofibers (NFs) in electrospun composite nanofibers with carbon nanotube multiwalled (MWCNT) by improving the electrical and piezoresistive behavior of such electrically conductive polymer composites. The here proposed Aerosol Mediated Localized Dissolution (AMLD) process has been shown to be effective in improving the 3D microporous NF mat by inducing local dissolution that is effective in improving the connections among fibers within the mat. The AMLD process is demonstrated here for polyethylene oxide (PEO) / MWCNTs composite nanofibers, showing that the electrical conductivity is particularly improved in those samples with low content of MWCNTs, even below the original percolation threshold. The improved electrical conductivity is coupled with exceptional sensitivity of the flex sensor for low MWCNTs contents, this is particularly due to the ability of the AMLD process to preserve the high surface area of the 3D mat by inducing better fiber-to-fiber contacts in few regions only. In addition, this work demonstrates the effectiveness of applying an electrical potential difference during the AMLD process to improve the alignment of MWCNTs within the 3D microporous NF mat. The combination of voltage and AMLD allow to obtain a gauge factor as high as 571.9 with a MWCNTs loading of 1 wt%

    Laser-heated rocket studies

    Get PDF
    CW laser heated rocket propulsion was investigated in both the flowing core and stationary core configurations. The laser radiation considered was 10.6 micrometers, and the working gas was unseeded hydrogen. The areas investigated included initiation of a hydrogen plasma capable of absorbing laser radiation, the radiation emission properties of hot, ionized hydrogen, the flow of hot hydrogen while absorbing and radiating, the heat losses from the gas and the rocket performance. The stationary core configuration was investigated qualitatively and semi-quantitatively. It was found that the flowing core rockets can have specific impulses between 1,500 and 3,300 sec. They are small devices, whose heating zone is only a millimeter to a few centimeters long, and millimeters to centimeters in radius, for laser power levels varying from 10 to 5,000 kW, and pressure levels of 3 to 10 atm. Heat protection of the walls is a vital necessity, though the fraction of laser power lost to the walls can be as low as 10% for larger powers, making the rockets thermally efficient

    Topic modeling and user network analysis on twitter during world lupus awareness day

    Get PDF
    Twitter is increasingly used by individuals and organizations to broadcast their feelings and practices, providing access to samples of spontaneously expressed opinions on all sorts of themes. Social media offers an additional source of data to unlock information supporting new insights disclosures, particularly for public health purposes. Systemic lupus erythematosus (SLE) is a complex, systemic autoimmune disease that remains a major challenge in therapeutic diagnostic and treatment management. When supporting patients with such a complex disease, sharing information through social media can play an important role in creating better healthcare services. This study explores the nature of topics posted by users and organizations on Twitter during world Lupus day to extract latent topics that occur in tweet texts and to identify what information is most commonly discussed among users. We identified online influencers and opinion leaders who discussed different topics. During this analysis, we found two different types of influencers that employed different narratives about the communities they belong to. Therefore, this study identifies hidden information for healthcare decision-makers and provides a detailed model of the implications for healthcare organizations to detect, understand, and define hidden content behind large collections of text

    3D Cell Culture: Recent Development in Materials with Tunable Stiffness

    Get PDF
    It is widely accepted that three-dimensional cell culture systems simulate physiological conditions better than traditional 2D systems. Although extracellular matrix components strongly modulate cell behavior, several studies underlined the importance of mechanosensing in the control of different cell functions such as growth, proliferation, differentiation, and migration. Human tissues are characterized by different degrees of stiffness, and various pathologies (e.g., tumor or fibrosis) cause changes in the mechanical properties through the alteration of the extracellular matrix structure. Additionally, these modifications have an impact on disease progression and on therapy response. Hence, the development of platforms whose stiffness could be modulated may improve our knowledge of cell behavior under different mechanical stress stimuli. In this review, we have analyzed the mechanical diversity of healthy and diseased tissues, and we have summarized recently developed materials with a wide range of stiffness

    Aerogels for energy and environmental applications

    Get PDF
    Aerogels are emerging as one of the most intriguing and promising groups of microporous materials, characterized by impressive properties such as low density, high surface area, high porosity and tunable surface chemistry. Fostering unique thermal and acoustic insulation features, for several decades they mainly received attention from the aerospace and building sectors. More recently, new great opportunities arose due to significant advances in the drying technologies that currently, represent the enabling step for aerogel synthesis and fabrication. This process-ability dramatically increased the interest toward aerogels from new disciplines. This explains why in the last decade the Environmental Science and Energy fields significantly contributed to the expansion of the aerogel technology, suggesting novel uses and applications and contributing to extend the group of materials that can be synthetized by aerogel processing. New, unforeseen properties emerged for aerogel materials, such as adsorption of contaminants and fluids purification, catalysis of different reactions, electrical conductivity. The present short-review aims at providing a critical overview of the key advances in the development of aerogels for energy and environmental applications, especially emphasizing the common strategies and properties that are turning aerogels into one of the new key emerging technologies of these areas of science

    Ultrasensitive Piezoresistive and Piezocapacitive Cellulose-Based Ionic Hydrogels for Wearable Multifunctional Sensing

    Get PDF
    Tactile sensors, namely, flexible devices that sense physical stimuli, have received much attention in the last few decades due to their applicability in a wide range of fields like the world of wearables, soft robotics, prosthetics, and e-skin. Nevertheless, achieving a trade-off among stretchability, good sensitivity, easy manufacturability, and multisensing ability is still a challenge. Herein, an extremely flexible strain sensor composed of a cellulose-based hydrogel is presented. A natural biocompatible carboxymethylcellulose (CMC) hydrogel endowed with ionic conductivity by sodium chloride (NaCl) was used as the sensitive part. Both the sensible layer and electrodes were investigated with an innovative approach for wearable sensor applications based on electrochemical impedance spectroscopy to find the best device configuration. The sensor, exploitable both as a piezoresistor and as a piezocapacitor, presents high sensitivity to external stimuli, together with an extreme stretchability of up to 600%, showing the best strain and temperature sensitivity among the ionic conductive hydrogel-based devices presented in the literature. The very high strain sensitivity enables the hydrogel to be implemented in wearable strain sensors to monitor different human motions and physiological signals, representing a valid solution for the realization of transparent, easily manufacturable, and low-environmental-impact devices

    Ultrasensitive Piezoresistive and Piezocapacitive Cellulose-Based Ionic Hydrogels for Wearable Multifunctional Sensing

    Get PDF
    Tactile sensors, namely, flexible devices that sense physical stimuli, have received much attention in the last few decades due to their applicability in a wide range of fields like the world of wearables, soft robotics, prosthetics, and e-skin. Nevertheless, achieving a trade-off among stretchability, good sensitivity, easy manufacturability, and multisensing ability is still a challenge. Herein, an extremely flexible strain sensor composed of a cellulose-based hydrogel is presented. A natural biocompatible carboxymethylcellulose (CMC) hydrogel endowed with ionic conductivity by sodium chloride (NaCl) was used as the sensitive part. Both the sensible layer and electrodes were investigated with an innovative approach for wearable sensor applications based on electrochemical impedance spectroscopy to find the best device configuration. The sensor, exploitable both as a piezoresistor and as a piezocapacitor, presents high sensitivity to external stimuli, together with an extreme stretchability of up to 600%, showing the best strain and temperature sensitivity among the ionic conductive hydrogel-based devices presented in the literature. The very high strain sensitivity enables the hydrogel to be implemented in wearable strain sensors to monitor different human motions and physiological signals, representing a valid solution for the realization of transparent, easily manufacturable, and low-environmental-impact devices
    • …
    corecore