3 research outputs found

    Pregled tehnika recikliranja litij-ionskih baterija

    Get PDF
    This paper presents a literature review on the processing of used lithium-ion batteries in both industry and research. On an industrial scale, lithium-ion batteries are primarily processed through pyrometallurgical methods, leading to incomplete utilisation of lithium cells. On the other hand, the hydrometallurgical route of recycling lithium-ion batteries poses challenges, such as large-scale discharging or inert gas pretreatment, largely due to explosion hazards. Modern methods of lithium-ion battery recycling are oriented toward refining the leach liquor through solvent extraction methods using D2EHPA and Cyanex 272, to recover Co, Mn, and Ni. The final Li product is obtained through Na2CO3 precipitation.Ovaj rad predstavlja pregled literature o obradi rabljenih litij-ionskih baterija u industriji i istraživanju. U industrijskoj razini, litij-ionske baterije ponajprije se obrađuju pirometalurškim metodama, što dovodi do nepotpunog iskorištenja litijevih ćelija. S druge strane, hidrometalurški put recikliranja litij-ionskih baterija predstavlja izazove kao što su veliko pražnjenje ili predobrada inertnim plinom, uglavnom zbog opasnosti od eksplozije. Suvremene metode recikliranja litij-ionskih baterija usmjerene su na rafiniranje tekućine za ispiranje metodama ekstrakcije pomoću D2EHPA i Cyanex 272, da bi se dobili Co, Mn i Ni. Konačni produkt, Li, dobiva se taloženjem s Na2CO3

    Pregled tehnika recikliranja litij-ionskih baterija

    Get PDF
    This paper presents a literature review on the processing of used lithium-ion batteries in both industry and research. On an industrial scale, lithium-ion batteries are primarily processed through pyrometallurgical methods, leading to incomplete utilisation of lithium cells. On the other hand, the hydrometallurgical route of recycling lithium-ion batteries poses challenges, such as large-scale discharging or inert gas pretreatment, largely due to explosion hazards. Modern methods of lithium-ion battery recycling are oriented toward refining the leach liquor through solvent extraction methods using D2EHPA and Cyanex 272, to recover Co, Mn, and Ni. The final Li product is obtained through Na2CO3 precipitation.Ovaj rad predstavlja pregled literature o obradi rabljenih litij-ionskih baterija u industriji i istraživanju. U industrijskoj razini, litij-ionske baterije ponajprije se obrađuju pirometalurškim metodama, što dovodi do nepotpunog iskorištenja litijevih ćelija. S druge strane, hidrometalurški put recikliranja litij-ionskih baterija predstavlja izazove kao što su veliko pražnjenje ili predobrada inertnim plinom, uglavnom zbog opasnosti od eksplozije. Suvremene metode recikliranja litij-ionskih baterija usmjerene su na rafiniranje tekućine za ispiranje metodama ekstrakcije pomoću D2EHPA i Cyanex 272, da bi se dobili Co, Mn i Ni. Konačni produkt, Li, dobiva se taloženjem s Na2CO3

    Sustainable development in the tinplate industry: refining tinplate leachate with cementation

    No full text
    Tin sludge produced during tin electroplating of steel sheet is an interesting secondary source of tin. Dried sludge usually contains more than 50% tin. Hydrometallurgical sludge treatment consists of several steps, including leaching in hydrochloric acid and electrolytic recovery of tin. The electrowinning process is negatively affected by the presence of impurities such as antimony and bismuth, which can cut overall current efficiency to 11% as well as reducing the quality of recovered tin. It is appropriate therefore to remove these impurities from the leachate before the electrowinning steps. This work studies the refining of leachate using cementation. The experiments were carried out at temperatures of 20, 40 and 60 °C at solid to liquid ratios of 1:60, 2:60, 3:60 and 4:60 using tin and iron dust as cementing metals. The leachates were mixed at a constant rate of 400 rpm during all cementation experiments. Effective removal of impurities was achieved in the case of iron powder cementation at s/l ratio 2:60 and temperature 20 °C. This cementation removed 98.49% bismuth and 99.14% antimony from the leachate solution. Electrolysis efficiency was increased from 11 to 71% after leachate refining. Antimony and bismuth were not detected in the final product obtained from refined electrolyte by means of electrolysis
    corecore