1,168 research outputs found

    Possible evolutionary transition from rapidly rotating neutron stars to strange stars due to spin-down

    Full text link
    We present a scenario of formation of strange stars due to spin-down of {\it rapidly rotating} neutron stars left after supernova explosions . By assuming a process where the total baryon mass is conserved but the angular momentum is lost due to emission of gravitational waves and/or the magnetic braking, we find that the transition from rapidly rotating neutron stars to slowly rotating strange stars is possible; a large amount of energy ∌1053ergs\sim 10^{53} ergs could be released. The liberated energy might become a new energy source for a delayed explosion of supernova. Furthermore, our scenario suggests that the supernova associated with gamma-ray bursts could become candidates for targets in the future observation of gravitational waves.Comment: 11 pages, 3 figures, Received November 5, 200

    Measurement and control of a mechanical oscillator at its thermal decoherence rate

    Full text link
    In real-time quantum feedback protocols, the record of a continuous measurement is used to stabilize a desired quantum state. Recent years have seen highly successful applications in a variety of well-isolated micro-systems, including microwave photons and superconducting qubits. By contrast, the ability to stabilize the quantum state of a tangibly massive object, such as a nanomechanical oscillator, remains a difficult challenge: The main obstacle is environmental decoherence, which places stringent requirements on the timescale in which the state must be measured. Here we describe a position sensor that is capable of resolving the zero-point motion of a solid-state, nanomechanical oscillator in the timescale of its thermal decoherence, a critical requirement for preparing its ground state using feedback. The sensor is based on cavity optomechanical coupling, and realizes a measurement of the oscillator's displacement with an imprecision 40 dB below that at the standard quantum limit, while maintaining an imprecision-back-action product within a factor of 5 of the Heisenberg uncertainty limit. Using the measurement as an error signal and radiation pressure as an actuator, we demonstrate active feedback cooling (cold-damping) of the 4.3 MHz oscillator from a cryogenic bath temperature of 4.4 K to an effective value of 1.1±\pm0.1 mK, corresponding to a mean phonon number of 5.3±\pm0.6 (i.e., a ground state probability of 16%). Our results set a new benchmark for the performance of a linear position sensor, and signal the emergence of engineered mechanical oscillators as practical subjects for measurement-based quantum control.Comment: 24 pages, 10 figures; typos corrected in main text and figure

    The X-ray afterglow of the Gamma-ray burst of May 8, 1997: spectral variability and possible evidence of an iron line

    Get PDF
    We report the possible detection (99.3% of statistical significance) of redshifted Fe iron line emission in the X-ray afterglow of Gamma-ray burst GRB970508 observed by BeppoSAX. Its energy is consistent with the redshift of the putative host galaxy determined from optical spectroscopy. The line disappeared about 1 day after the burst. We have also analyzed the spectral variability during the outburst event that characterizes the X-ray afterglow of this GRB. The spectrum gets harder during the flare, turning to steep when the flux decreases. The variability, intensity and width of the line indicate that the emitting region should have a mass approximately greater than 0.5 solar masses (assuming the iron abundance similar to its solar value), a size of about 3 times 10^15 cm, be distributed anisotropically, and be moving with sub-relativistic speed. In contrast to the fairly clean environment expected in the merging of two neutron stars, the observed line properties would imply that the site of the burst is embedded in a large mass of material, consistent with pre-explosion ejecta of a very massive star. This material could be related with the outburst observed in the afterglow 1 day after the GRB and with the spectral variations measured during this phase.Comment: To appear in The Astrophysical Journal Letters, AASTEX LateX, 2 PostScript figure

    Multi-wavelength analysis of the field of the dark burst GRB 031220

    Full text link
    We have collected and analyzed data taken in different spectral bands (from X-ray to optical and infrared) of the field of GRB031220 and we present results of such multiband observations. Comparison between images taken at different epochs in the same filters did not reveal any strong variable source in the field of this burst. X-ray analysis shows that only two of the seven Chandra sources have a significant flux decrease and seem to be the most likely afterglow candidates. Both sources do not show the typical values of the R-K colour but they appear to be redder. However, only one source has an X-ray decay index (1.3 +/- 0.1) that is typical for observed afterglows. We assume that this source is the best afterglow candidate and we estimate a redshift of 1.90 +/- 0.30. Photometric analysis and redshift estimation for this object suggest that this GRB can be classified as a Dark Burst and that the obscuration is the result of dust extinction in the circum burst medium or inside the host galaxy.Comment: 7 pages, 5 figures, accepted for publication on A&

    The swan song: the disappearance of the nucleus of NGC 4051 and the echo of its past glory

    Get PDF
    BeppoSAX observed the low-luminous Seyfert 1 Galaxy NGC4051 in a ultra-dim X-ray state. The 2-10 keV flux (1.26 x 10^{-12} erg/cm^2/s) was about 20 times fainter than its historical average value, and remained steady along the whole observation (~2.3 days). The observed flat spectrum (\Gamma ~ 0.8) and intense iron line (EW ~600 eV) are best explained assuming that the active nucleus has switched off, leaving only a residual reflection component visible.Comment: 5 pages, Latex, 3 Postscript figures, accepted for publication in MNRA
    • 

    corecore