568 research outputs found

    Application Scenarios of Interactive Science Fiction Prototyping in Virtual Worlds for Education.

    Get PDF
    This article discusses the potentials of 3D virtual worlds as tool for science fiction prototyping in education. Science fiction prototyping has become an important resource for creating, discussing, and assessing the impact of future scenarios. Introducing this creative process into education and training can help students understand societal and contextual implications of future technologies, scenarios, and environments. We discuss traditional SFP processes, such as storywriting,movies, or computer games that require different talents from their creators. Based on our findings we will introduce ‘Interactive Science Fiction Prototyping (ISFP)’ as a simplified creation approach in virtual world environments. ISFP enables students to create to reflect on science fiction scenarios in an interactive and collaborative way. As an example of ISFP a science fiction prototype of a future city was created and discussed in the virtual world framework Open Wonderland

    Interactive Science Fiction Prototyping in Virtual Worlds: Fundamentals and Applications

    Get PDF
    Science Fiction Prototyping (SFP) is a powerful tool to imagine, explore, and exploit future technologies, science, and environments and it can be a valuable asset for education, multimedia, and research. This article explores SFP in interactive, flexible, immersive, and collaborative settings, which introduced as Interactive Science Fiction Prototyping (ISFP) and allows new forms of experiencing and reflecting on prototypes. We investigate how to integrate the ISFP process into an existing collaborative virtual world platform and outline required integration steps. Furthermore, we discuss different application scenarios for ISFP in educational, artistic, and business domains and conclude with future ideas and challenges to explore modern scientific ideas

    Fluid-structure interaction with flexible multibody dynamics and smoothed particle hydrodynamics

    Get PDF
    In this work, we present a versatile and efficient computational approach to fluid-structure interaction based on the coupling of flexible multibody systems with fluids analyzed by means of the meshfree particle-based method smoothed particle hydrodynamics. Regarding numerical examples, rigid or flexible cells, and fibers in microchannel flows are investigated. As a main feature of this paper, our results are validated with reference simulations obtained from fundamentally different approaches

    Modeling Burned Areas in Indonesia: The FLAM Approach

    Get PDF
    Large-scale wildfires affect millions of hectares of land in Indonesia annually and produce severe smoke haze pollution and carbon emissions, with negative impacts on climate change, health, the economy and biodiversity. In this study, we apply a mechanistic fire model to estimate burned area in Indonesia for the first time. We use the Wildfire Climate Impacts and Adaptation Model (FLAM) that operates with a daily time step on the grid cell of 0.25 arc degrees, the same spatio-temporal resolution as in the Global Fire Emissions Database v4 (GFED). GFED data accumulated from 2000–2009 are used for calibrating spatially-explicit suppression efficiency in FLAM. Very low suppression levels are found in peatland of Kalimantan and Sumatra, where individual fires can burn for very long periods of time despite extensive rains and fire-fighting attempts. For 2010–2016, we validate FLAM estimated burned area temporally and spatially using annual GFED observations. From the validation for burned areas aggregated over Indonesia, we obtain Pearson’s correlation coefficient separately for wildfires and peat fires, which equals 0.988 in both cases. Spatial correlation analysis shows that in areas where around 70% is burned, the correlation coefficients are above 0.6, and in those where 30% is burned, above 0.9

    Aggressiveness of human melanoma xenograft models is promoted by aneuploidy-driven gene expression deregulation.

    Get PDF
    Melanoma is a devastating skin cancer characterized by distinct biological subtypes. Besides frequent mutations in growth- and survival-promoting genes like BRAF and NRAS, melanomas additionally harbor complex non-random genomic alterations. Using an integrative approach, we have analysed genomic and gene expression changes in human melanoma cell lines (N=32) derived from primary tumors and various metastatic sites and investigated the relation to local growth aggressiveness as xenografts in immuno-compromised mice (N=22). Although the vast majority >90% of melanoma models harbored mutations in either BRAF or NRAS, significant differences in subcutaneous growth aggressiveness became obvious. Unsupervised clustering revealed that genomic alterations rather than gene expression data reflected this aggressive phenotype, while no association with histology, stage or metastatic site of the original melanoma was found. Genomic clustering allowed separation of melanoma models into two subgroups with differing local growth aggressiveness in vivo. Regarding genes expressed at significantly altered levels between these subgroups, a surprising correlation with the respective gene doses (>85% accordance) was found. Genes deregulated at the DNA and mRNA level included well-known cancer genes partly already linked to melanoma (RAS genes, PTEN, AURKA, MAPK inhibitors Sprouty/Spred), but also novel candidates like SIPA1 (a Rap1GAP). Pathway mining further supported deregulation of Rap1 signaling in the aggressive subgroup e.g. by additional repression of two Rap1GEFs. Accordingly, siRNA-mediated down-regulation of SIPA1 exerted significant effects on clonogenicity, adherence and migration in aggressive melanoma models. Together our data suggest that an aneuploidy-driven gene expression deregulation drives local aggressiveness in human melanoma

    What are the limits to oil palm expansion?

    Get PDF
    Palm oil production has boomed over the last decade, resulting in an expansion of the global oil palm planting area from 10 to 17 Million hectares between 2000 and 2012. Previous studies showed that a significant share of this expansion has come at the expense of tropical forests, notably in Indonesia and Malaysia, the current production centers. Governments of developing and emerging countries in all tropical regions increasingly promote oil palm cultivation as a major contributor to poverty alleviation, as well as food and energy independence. However, being under pressure from several nongovernmental environmental organizations and consumers, the main palm oil traders have committed to sourcing sustainable palm oil. Against this backdrop we assess the area of suitable land and what are the limits to future oil palm expansion when several constraints are considered. We find that suitability is mainly determined by climatic conditions resulting in 1.37 billion hectares of suitable land for oil palm cultivation concentrated in twelve tropical countries. However, we estimate that half of the biophysically suitable area is already allocated to other uses, including protected areas which cover 30% of oil palm suitable area. Our results also highlight that the non-conversion of high carbon stock forest (>100 tC/ha) would be the most constraining for future oil palm expansion as it would exclude two-thirds of global oil palm suitable area. Combining eight criteria which might restrict future land availability for oil palm expansion, we find that 234 million hectares or 17% of worldwide suitable area are left. This might seem that the limits for oil palm expansion are far from being reached but one needs to take into account that some of this area might be hardly accessible currently with only 18% of this remaining area being under 2 hours transportation to the closest city- and that growing demand for other agricultural commodities which might also compete for this land has not been yet taken into account
    corecore