5 research outputs found
Morpho-Physiological Responses of Three Italian Olive Tree (Olea europaea L.) Cultivars to Drought Stress
Water scarcity in agriculture can limit crop production and trigger the need for more effective water resource management. As a result, it is critical to identify new crop genotypes that are more drought tolerant and perform better under low irrigation or even rain-fed conditions. The olive tree is a high-value crop that is well adapted to dry Mediterranean conditions. However, different genotypes may have developed different mechanisms of tolerance to water stress. To investigate such mechanisms, we examined three Italian olive cultivars (‘Giarraffa’, ‘Leccino’, and ‘Maurino’) grown in a greenhouse under drought stress. We found that single genotypes responded differently to the drought, though not all parameters revealed significant differences. The first major difference among the cultivars was in transpiration: the lower stomatal density and stomatal conductance of ‘Giarraffa’ allow this cultivar to use water more conservatively. In parallel with the reduction in stomatal and mesophyll conductance, the drought-stressed group of ‘Giarraffa’ maintained the electron transport rate and effective efficiency levels of photosystem II similar to those of the control until the fourth week of stress. The fluorescence parameters revealed the earlier closure of reaction photosynthetic centres in ‘Leccino’. Finally, the higher rate of electrolyte leakage in ‘Maurino’ indicated a significant ions loss in this cultivar when it was subjected to the drought. Both water management under stress conditions and the effect of drought on photosynthesis make ‘Giarraffa’ interesting to researchers studying its use in breeding or water-saving programmes
Modulation of miR-146b Expression during Aging and the Impact of Physical Activity on Its Expression and Chondrogenic Progenitors
The finding of molecules associated with aging is important for the prevention of chronic degenerative diseases and for longevity strategies. MicroRNAs (miRNAs) are post-transcriptional regulators involved in many biological processes and miR-146b-5p has been shown to be involved in different degenerative diseases. However, miR-146b-5p modulation has not been evaluated in mesenchymal stem cells (MSCs) commitment or during aging. Therefore, the modulation of miR-146b-5p in the commitment and differentiation of mesenchymal cells as well as during maturation and aging in zebrafish model were analyzed. In addition, circulating miR-146b-5p was evaluated in human subjects at different age ranges. Thus, the role of physical activity in the modulation of miR-146b-5p was also investigated. To achieve these aims, RT (real-time)-PCR, Western blot, cell transfections, and three-dimensional (3D) culture techniques were applied. Our findings show that miR-146b-5p expression drives MSCs to adipogenic differentiation and increases during zebrafish maturation and aging. In addition, miR-146b-5p expression is higher in females compared to males and it is associated with the aging in humans. Interestingly, we also observed that the physical activity of walking downregulates circulating miR-146b-5p levels in human females and increases the number of chondroprogenitors. In conclusion, miR-146b-5p can be considered an age-related marker and can represent a useful marker for identifying strategies, such as physical activity, aimed at counteracting the degenerative processes of aging
Exploring the Interplay of RUNX2 and CXCR4 in Melanoma Progression
Overexpression of the Runt-related transcription factor 2 (RUNX2) has been reported in several cancer types, and the C-X-C motif chemokine receptor 4 (CXCR4) has an important role in tumour progression. However, the interplay between CXCR4 and RUNX2 in melanoma cells remains poorly understood. In the present study, we used melanoma cells and a RUNX2 knockout (RUNX2-KO) in vitro model to assess the influence of RUNX2 on CXCR4 protein levels along with its effects on markers associated with cell invasion and autophagy. Osteotropism was assessed using a 3D microfluidic model. Moreover, we assessed the impact of CXCR4 on the cellular levels of key cellular signalling proteins involved in autophagy. We observed that melanoma cells express both RUNX2 and CXCR4. Restored RUNX2 expression in RUNX2 KO cells increased the expression levels of CXCR4 and proteins associated with the metastatic process. The protein markers of autophagy LC3 and beclin were upregulated in response to increased CXCR4 levels. The CXCR4 inhibitor WZ811 reduced osteotropism and activated the mTOR and p70-S6 cell signalling proteins. Our data indicate that the RUNX2 transcription factor promotes the expression of the CXCR4 chemokine receptor on melanoma cells, which in turn promotes autophagy, cell invasiveness, and osteotropism, through the inhibition of the mTOR signalling pathway. Our data suggest that RUNX2 promotes melanoma progression by upregulating CXCR4, and we identify the latter as a key player in melanoma-related osteotropism
Crosstalk between Bone and Muscles during Physical Activity
Bone–muscle crosstalk is enabled thanks to the integration of different molecular signals, and it is essential for maintaining the homeostasis of skeletal and muscle tissue. Both the skeletal system and the muscular system perform endocrine activity by producing osteokines and myokines, respectively. These cytokines play a pivotal role in facilitating bone–muscle crosstalk. Moreover, recent studies have highlighted the role of non-coding RNAs in promoting crosstalk between bone and muscle in physiological or pathological conditions. Therefore, positive stimuli or pathologies that target one of the two systems can affect the other system as well, emphasizing the reciprocal influence of bone and muscle. Lifestyle and in particular physical activity influence both the bone and the muscular apparatus by acting on the single system but also by enhancing its crosstalk. Several studies have in fact demonstrated the modulation of circulating molecular factors during physical activity. These molecules are often produced by bone or muscle and are capable of activating signaling pathways involved in bone–muscle crosstalk but also of modulating the response of other cell types. Therefore, in this review we will discuss the effects of physical activity on bone and muscle cells, with particular reference to the biomolecular mechanisms that regulate their cellular interactions
Exploring the Interplay of RUNX2 and CXCR4 in Melanoma Progression
Overexpression of the Runt-related transcription factor 2 (RUNX2) has been reported in several cancer types, and the C-X-C motif chemokine receptor 4 (CXCR4) has an important role in tumour progression. However, the interplay between CXCR4 and RUNX2 in melanoma cells remains poorly understood. In the present study, we used melanoma cells and a RUNX2 knockout (RUNX2-KO) in vitro model to assess the influence of RUNX2 on CXCR4 protein levels along with its effects on markers associated with cell invasion and autophagy. Osteotropism was assessed using a 3D microfluidic model. Moreover, we assessed the impact of CXCR4 on the cellular levels of key cellular signalling proteins involved in autophagy. We observed that melanoma cells express both RUNX2 and CXCR4. Restored RUNX2 expression in RUNX2 KO cells increased the expression levels of CXCR4 and proteins associated with the metastatic process. The protein markers of autophagy LC3 and beclin were upregulated in response to increased CXCR4 levels. The CXCR4 inhibitor WZ811 reduced osteotropism and activated the mTOR and p70-S6 cell signalling proteins. Our data indicate that the RUNX2 transcription factor promotes the expression of the CXCR4 chemokine receptor on melanoma cells, which in turn promotes autophagy, cell invasiveness, and osteotropism, through the inhibition of the mTOR signalling pathway. Our data suggest that RUNX2 promotes melanoma progression by upregulating CXCR4, and we identify the latter as a key player in melanoma-related osteotropism