13 research outputs found

    Tissue hyaluronan expression, as reflected in the sputum of lung cancer patients, is an indicator of malignancy

    Get PDF
    Hyaluronan (HA) shows promise for detecting cancerous change in pleural effusion and urine. However, there is uncertainty about the localization of HA in tumor tissue and its relationship with different histological types and other components of the extracellular matrix, such as angiogenesis. We evaluated the association between HA and degree of malignancy through expression in lung tumor tissue and sputum. Tumoral tissue had significantly increased HA compared to normal tissue. Strong HA staining intensity associated with cancer cells was significant in squamous cell carcinoma compared to adenocarcinoma and large cell carcinoma. A significant direct association was found between tumors with a high percentage of HA and MVD (microvessel density) in tumoral stroma. Similarly significant was the direct association between N1 tumors and high levels of HA in cancer cells. Cox multivariate analysis showed significant association between better survival and low HA. HA increased in sputum from lung cancer patients compared to cancer-free and healthy volunteers and a significant correlation was found between HA in sputum and HA in cancer tissue. Localization of HA in tumor tissue was related to malignancy and reflected in sputum, making this an emerging factor for an important diagnostic procedure in patients suspected to have lung cancer. Further study in additional patients in a randomized prospective trial is required to finalize these results and to validate our quantitative assessment of HA, as well as to couple it to gold standard sputum cytology.Research supported by FAPESP (2010/11005-5 and 2010/04462) and CNPq (#471939/2010-2 and 483005/2012-6

    Combined immunohistochemistry of β-catenin, cytokeratin 7, and cytokeratin 20 is useful in discriminating primary lung adenocarcinomas from metastatic colorectal cancer

    Get PDF
    BACKGROUND: It is important to discriminate between primary and secondary lung cancer. However, often, the discriminating diagnosis of primary lung acinar adenocarcinoma and lung metastasis of colorectal cancer based on morphological and pathological findings is difficult. The purpose of this study was to evaluate the clinical usefulness of immunohistochemistry of β-catenin, cytokeratin (CK) 7, and CK20 for the discriminating diagnosis of lung cancer. METHODS: We performed immunohistochemistry of β-catenin, CK7, and CK20 in 19 lung metastasis of colorectal cancer samples, 10 corresponding primary colorectal cancer samples and 11 primary lung acinar adenocarcinoma samples and compared the levels of accuracy of the discriminating diagnosis by using antibodies against these antigens. RESULTS: Positive staining of β-catenin was observed in all the lung metastasis of colorectal cancer samples as well as in the primary colorectal cancer samples but in none of the primary lung acinar adenocarcinoma samples. Positive staining of CK7 was observed in 90.9% of the primary lung acinar adenocarcinoma samples and in 5.3% of the lung metastasis of colorectal cancer samples, but in none of the primary colorectal cancer samples. Positive staining of CK20 was observed in all the primary colorectal cancer samples and in 84.2% of the lung metastasis of colorectal cancer samples, but in none of the primary lung acinar adenocarcinoma samples. CONCLUSION: Combined immunohistochemistry of β-catenin, CK7, and CK20 is useful for making a discriminating diagnosis between lung metastasis of colorectal cancer and primary lung acinar adenocarcinoma. This method will enable accurate diagnosis of a lung tumor and will be useful for selecting appropriate therapeutic strategies, including chemotherapeutic agents and operation methods

    Cancer Genomics Identifies Regulatory Gene Networks Associated with the Transition from Dysplasia to Advanced Lung Adenocarcinomas Induced by c-Raf-1

    Get PDF
    Background: Lung cancer is a leading cause of cancer morbidity. To improve an understanding of molecular causes of disease a transgenic mouse model was investigated where targeted expression of the serine threonine kinase c-Raf to respiratory epithelium induced initialy dysplasia and subsequently adenocarcinomas. This enables dissection of genetic events associated with precancerous and cancerous lesions. Methodology/Principal Findings: By laser microdissection cancer cell populations were harvested and subjected to whole genome expression analyses. Overall 473 and 541 genes were significantly regulated, when cancer versus transgenic and non-transgenic cells were compared, giving rise to three distinct and one common regulatory gene network. At advanced stages of tumor growth predominately repression of gene expression was observed, but genes previously shown to be upregulated in dysplasia were also up-regulated in solid tumors. Regulation of developmental programs as well as epithelial mesenchymal and mesenchymal endothelial transition was a hall mark of adenocarcinomas. Additionaly, genes coding for cell adhesion, i.e. the integrins and the tight and gap junction proteins were repressed, whereas ligands for receptor tyrosine kinase such as epi- and amphiregulin were up-regulated. Notably, Vegfr- 2 and its ligand Vegfd, as well as Notch and Wnt signalling cascades were regulated as were glycosylases that influence cellular recognition. Other regulated signalling molecules included guanine exchange factors that play a role in an activation of the MAP kinases while several tumor suppressors i.e. Mcc, Hey1, Fat3, Armcx1 and Reck were significantly repressed. Finally, probable molecular switches forcing dysplastic cells into malignantly transformed cells could be identified. Conclusions/Significance: This study provides insight into molecular pertubations allowing dysplasia to progress further to adenocarcinoma induced by exaggerted c-Raf kinase activity
    corecore