7,970 research outputs found

    Explicitly broken lepton number at low energy in the Higgs triplet model

    Full text link
    We suppose that lepton number is explicitly broken at low energy scale(M) in the framework of the Higgs triplet(Δ\Delta) model. The scalar sector of the model is developed considering the particular assumption M=vΔ≈M=v_\Delta \approx eV. We show that such assumption infers a particular mass spectrum for the scalars that compose the triplet and cause a decoupling of these scalars from those that compose the standard scalar doublet.Comment: Minor changes, New references added, To appear at MPL

    Spontaneous CP violation in the 3-3-1 model with right-handed neutrinos

    Full text link
    We implement the mechanism of spontaneous CP violation in the 3-3-1 model with right-handed neutrinos and recognize their sources of CP violation. Our main result is that the mechanism works already in the minimal version of the model and new sources of CP violation emerges as an effect of new physics at energies higher than the electroweak scale.Comment: Major changes in the quark sector, electronic dipole moment of the neutron was evaluated, accepted for publication in the physical review

    Invisible Z decay width bounds on active-sterile neutrino mixing in the (3+1) and (3+2) models

    Full text link
    In this work we consider the standard model extended with singlet sterile neutrinos with mass in the eV range and mixed with the active neutrinos. The active-sterile neutrino mixing renders new contributions to the invisible Z decay width which, in the case of light sterile neutrinos, depends on the active-sterile mixing matrix elements only. We then use the current experimental value of the invisible Z decay width to obtain bounds on these mixing matrix elements for both (3+1) and (3+2) models.Comment: 10 pages, 5 figure

    Singular diffusion and criticality in a confined sandpile

    Full text link
    We investigate the behavior of a two-state sandpile model subjected to a confining potential in one and two dimensions. From the microdynamical description of this simple model with its intrinsic exclusion mechanism, it is possible to derive a continuum nonlinear diffusion equation that displays singularities in both the diffusion and drift terms. The stationary-state solutions of this equation, which maximizes the Fermi-Dirac entropy, are in perfect agreement with the spatial profiles of time-averaged occupancy obtained from model numerical simulations in one as well as in two dimensions. Surprisingly, our results also show that, regardless of dimensionality, the presence of a confining potential can lead to the emergence of typical attributes of critical behavior in the two-state sandpile model, namely, a power-law tail in the distribution of avalanche sizes.Comment: 5 pages, 5 figure

    Neutrino Mixing and the Minimal 3-3-1 Model

    Full text link
    In the minimal 3-3-1 model charged leptons come in a non-diagonal basis. Moreover the Yukawa interactions of the model lead to a non-hermitian charged lepton mass matrix. In other words, the minimal 3-3-1 model presents a very complex lepton mixing. In view of this we check rigorously if the possible textures of the lepton mass matrices allowed by the minimal 3-3-1 model can lead or not to the neutrino mixing required by the recent experiments in neutrino oscillation.Comment: two references add, minor chages, accepted for publication in MPL
    • 

    corecore