54 research outputs found
Cerebral Regulation in Different Maximal Aerobic Exercise Modes
We investigated cerebral responses, simultaneously with peripheral and ratings of perceived exertion (RPE) responses, during different VO2MAX-matched aerobic exercise modes. Nine cyclists (VO2MAX of 57.5 ± 6.2 ml·kg−1·min−1) performed a maximal, controlled-pace incremental test (MIT) and a self-paced 4 km time trial (TT4km). Measures of cerebral (COX) and muscular (MOX) oxygenation were assessed throughout the exercises by changes in oxy- (O2Hb) and deoxy-hemoglobin (HHb) concentrations over the prefrontal cortex (PFC) and vastus lateralis (VL) muscle, respectively. Primary motor cortex (PMC) electroencephalography (EEG), VL, and rectus femoris EMG were also assessed throughout the trials, together with power output and cardiopulmonary responses. The RPE was obtained at regular intervals. Similar motor output (EMG and power output) occurred from 70% of the duration in MIT and TT4km, despite the greater motor output, muscle deoxygenation (↓ MOX) and cardiopulmonary responses in TT4km before that point. Regarding cerebral responses, there was a lower COX (↓ O2Hb concentrations in PFC) at 20, 30, 40, 50 and 60%, but greater at 100% of the TT4km duration when compared to MIT. The alpha wave EEG in PMC remained constant throughout the exercise modes, with greater values in TT4km. The RPE was maximal at the endpoint in both exercises, but it increased slower in TT4km than in MIT. Results showed that similar motor output and effort tolerance were attained at the closing stages of different VO2MAX-matched aerobic exercises, although the different disturbance until that point. Regardless of different COX responses during most of the exercises duration, activation in PMC was preserved throughout the exercises, suggesting that these responses may be part of a centrally-coordinated exercise regulation
Physiological and Psychological Effects of Deception on Pacing Strategy and Performance: A Review
The aim of an optimal pacing strategy during exercise is to enhance performance whilst ensuring physiological limits are not surpassed, which has been shown to result in a metabolic reserve at the end of the exercise. There has been debate surrounding the theoretical models that have been proposed to explain how pace is regulated, with more recent research investigating a central control of exercise regulation. Deception has recently emerged as a common, practical approach to manipulate key variables during exercise. There are a number of ways in which deception interventions have been designed, each intending to gain particular insights into pacing behaviour and performance. Deception methodologies can be conceptualised according to a number of dimensions such as deception timing (prior to or during exercise), presentation frequency (blind, discontinuous or continuous) and type of deception (performance, biofeedback or environmental feedback). However, research evidence on the effects of deception has been perplexing and the use of complex designs and varied methodologies makes it difficult to draw any definitive conclusions about how pacing strategy and performance are affected by deception. This review examines existing research in the area of deception and pacing strategies, and provides a critical appraisal of the different methodological approaches used to date. It is hoped that this analysis will inform the direction and methodology of future investigations in this area by addressing the mechanisms through which deception impacts upon performance and by elucidating the potential application of deception techniques in training and competitive settings
Expanding the MTM1 mutational spectrum: novel variants including the first multi-exonic duplication and development of a locus-specific database
Myotubular myopathy (MIM#310400), the X-linked form of Centronuclear myopathy (CNM) is mainly characterized by neonatal hypotonia and inability to maintain unassisted respiration. The MTM1 gene, responsible for this disease, encodes myotubularin - a lipidic phosphatase involved in vesicle trafficking regulation and maturation. Recently, it was shown that myotubularin interacts with desmin, being a major regulator of intermediate filaments. We report the development of a locus-specific database for MTM1 using the Leiden Open Variation database software (http://www.lovd.nl/MTM1), with data collated for 474 mutations identified in 472 patients (by June 2012). Among the entries are a total of 25 new mutations, including a large deletion encompassing introns 2-15. During database implementation it was noticed that no large duplications had been reported. We tested a group of eight uncharacterized CNM patients for this specific type of mutation, by multiple ligation-dependent probe amplification (MLPA) analysis. A large duplication spanning exons 1-5 was identified in a boy with a mild phenotype, with results pointing toward possible somatic mosaicism. Further characterization revealed that this duplication causes an in-frame deletion at the mRNA level (r.343_444del). Results obtained with a next generation sequencing approach suggested that the duplication extends into the neighboring MAMLD1 gene and subsequent cDNA analysis detected the presence of a MTM1/MAMLD1 fusion transcript. A complex rearrangement involving the duplication of exon 10 has since been reported, with detection also enabled by MLPA analysis. It is thus conceivable that large duplications in MTM1 may account for a number of CNM cases that have remained genetically unresolved
Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults
Background
Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories.
Methods
We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI 2 SD above the median).
Findings
From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining underweight or thinness.
Interpretation
The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesity.
Funding
UK Medical Research Council, UK Research and Innovation (Research England), UK Research and Innovation (Innovate UK), and European Union
- …