5,479 research outputs found

    Spinwave damping in the two-dimensional ferromagnetic XY model

    Get PDF
    The effect of damping of spinwaves in a two-dimensional classical ferromagnetic XY model is considered. The damping rate Γq\Gamma_{q} is calculated using the leading diagrams due to the quartic-order deviations from the harmonic spin Hamiltonian. The resulting four-dimensional integrals are evaluated by extending the techniques developed by Gilat and others for spectral density types of integrals. Γq\Gamma_{q} is included into the memory function formalism due to Reiter and Solander, and Menezes, to determine the dynamic structure function S(q,ω)S(q,\omega). For the infinite sized system, the memory function approach is found to give non-divergent spinwave peaks, and a smooth nonzero background intensity (``plateau'' or distributed intensity) for the whole range of frequencies below the spinwave peak. The background amplitude relative to the spinwave peak rises with temperature, and eventually becomes higher than the spinwave peak, where it appears as a central peak. For finite-sized systems, there are multiple sequences of weak peaks on both sides of the spinwave peaks whose number and positions depend on the system size and wavevector in integer units of 2π/L2\pi/L. These dynamical finite size effects are explained in the memory function analysis as due to either spinwave difference processes below the spinwave peak or sum processes above the spinwave peak. These features are also found in classical Monte Carlo -- Spin-Dynamics simulations.Comment: 20 two-column page

    Charged and Neutral Currents in a 3-3-1 Model with Right-Handed Neutrinos

    Full text link
    The charged and the neutral currents are obtained by using a formal algebraical approach (developed and applied by the author) within the exact solution of a 3-3-1 gauge model with right-handed neutrinos. The entire Standard Model phenomenology is recovered without imposing any supplemental condition, but only by choosing an adecquate set of parameters from the very beginning of the calculus. A new and rich phenomenology regarding the particles and their currents occurs as well. The appealing feature of our results resides in the exact expressions of the currents which need not the adjustment usually due to the small mixing angle ϕ\phi between neutral bosons ZZ and Z′Z^{\prime} (like in the most of the papers in the literature treating the same issue). The required mixing was considered and aleready performed as an intermediate step by the solving method itself, since the physical eigenstates of those bosons were determined and then identified in the neutral currents.Comment: 14 pages, 1 Table, no figure

    XMM-Newton observations of the low-luminosity cataclysmic variable V405 Pegasi

    Full text link
    V405 Peg is a low-luminosity cataclysmic variable (CV) that was identified as the optical counterpart of the bright, high-latitude ROSAT all-sky survey source RBS1955. The system was suspected to belong to a largely undiscovered population of hibernating CVs. Despite intensive optical follow-up its subclass however remained undetermined. We want to further classify V405 Peg and understand its role in the CV zoo via its long-term behaviour, spectral properties, energy distribution and accretion luminosity. We perform a spectral and timing analysis of \textit{XMM-Newton} X-ray and ultra-violet data. Archival WISE, HST, and Swift observations are used to determine the spectral energy distribution and characterize the long-term variability. The X-ray spectrum is characterized by emission from a multi-temperature plasma. No evidence for a luminous soft X-ray component was found. Orbital phase-dependent X-ray photometric variability by ∼50%\sim50\% occurred without significant spectral changes. No further periodicity was significant in our X-ray data. The average X-ray luminosity during the XMM-Newton observations was L_X, bol simeq 5e30 erg/s but, based on the Swift observations, the corresponding luminosity varied between 5e29 erg/s and 2e31 erg/son timescales of years. The CV subclass of this object remains elusive. The spectral and timing properties show commonalities with both classes of magnetic and non-magnetic CVs. The accretion luminosity is far below than that expected for a standard accreting CV at the given orbital period. Objects like V405 Peg might represent the tip of an iceberg and thus may be important contributors to the Galactic Ridge X-ray Emission. If so they will be uncovered by future X-ray surveys, e.g. with eROSITA.Comment: A&A, in pres

    Cosmology of Brane-Bulk Models in Five Dimensions

    Get PDF
    We study the cosmology of models with four space and one time dimension where our universe is a 3-brane and report a few results which extend existing work in several directions. Assuming a stable fifth dimension, we obtain a solution for the metric, which does not depend on any arbitrary parameters. We discuss some implications of this result.Comment: Minor changes: brane energy conservation law and some typos corrected. All main results unchanged. 11 pages, no figures, LaTeX fil
    • …
    corecore