134 research outputs found

    Strongly interacting bosons on a three-leg ladder in the presence of a homogeneous flux

    Get PDF
    We perform a density-matrix renormalization-group study of strongly interacting bosons on a three-leg ladder in the presence of a homogeneous flux. Focusing on one-third filling, we explore the phase diagram in dependence of the magnetic flux and the inter-leg tunneling strength. We find several phases including a Meissner phase, vortex liquids, a vortex lattice, as well as a staggered-current phase. Moreover, there are regions where the chiral current reverses its direction, both in the Meissner and in the staggered-current phase. While the reversal in the latter case can be ascribed to spontaneous breaking of translational invariance, in the first it stems from an effective flux increase in the rung direction. Interactions are a necessary ingredient to realize either type of chiral-current reversal

    Vortex and Meissner phases of strongly-interacting bosons on a two-leg ladder

    Get PDF
    We establish the phase diagram of the strongly-interacting Bose-Hubbard model defined on a two-leg ladder geometry in the presence of a homogeneous flux. Our work is motivated by a recent experiment [Atala et al., Nature Phys. 10, 588 (2014)], which studied the same system, in the complementary regime of weak interactions. Based on extensive density matrix renormalization group simulations and a bosonization analysis, we fully explore the parameter space spanned by filling, inter-leg tunneling, and flux. As a main result, we demonstrate the existence of gapless and gapped Meissner and vortex phases, with the gapped states emerging in Mott-insulating regimes. We calculate experimentally accessible observables such as chiral currents and vortex patterns.Comment: 4 pages + Supplementary Materia

    Dynamics of apparent horizons in quantum gravitational collapse

    Get PDF
    We study the gravitational collapse of a massless scalar field within the effective scenario of loop quantum gravity. Classical singularity is avoided and replaced by a quantum bounce in this model. It is shown that, quantum gravity effects predict a threshold scale below which no horizon can form as the collapse evolves towards the bounce.Comment: Contribution to the Spanish Relativity Meeting in Portugal 2012 (ERE2012), Guimaraes, Portuga

    Spontaneous increase of magnetic flux and chiral-current reversal in bosonic ladders: Swimming against the tide

    Get PDF
    The interplay between spontaneous symmetry breaking in many-body systems, the wavelike nature of quantum particles and lattice effects produces an extraordinary behavior of the chiral current of bosonic particles in the presence of a uniform magnetic flux defined on a two-leg ladder. While non-interacting as well as strongly interacting particles, stirred by the magnetic field, circulate along the system's boundary in the counterclockwise direction in the ground state, interactions stabilize vortex lattices. These states break translational symmetry, which can lead to a reversal of the circulation direction. Our predictions could readily be accessed in quantum gas experiments with existing setups or in arrays of Josephson junctions.Comment: 5 pages + 5 pages of supplementary materia

    Tailoring Anderson localization by disorder correlations in 1D speckle potentials

    Full text link
    We study Anderson localization of single particles in continuous, correlated, one-dimensional disordered potentials. We show that tailored correlations can completely change the energy-dependence of the localization length. By considering two suitable models of disorder, we explicitly show that disorder correlations can lead to a nonmonotonic behavior of the localization length versus energy. Numerical calculations performed within the transfer-matrix approach and analytical calculations performed within the phase formalism up to order three show excellent agreement and demonstrate the effect. We finally show how the nonmonotonic behavior of the localization length with energy can be observed using expanding ultracold-atom gases

    Localization of a matter wave packet in a disordered potential

    Full text link
    We theoretically study the Anderson localization of a matter wave packet in a one-dimensional disordered potential. We develop an analytical model which includes the initial phase-space density of the matter wave and the spectral broadening induced by the disorder. Our approach predicts a behavior of the localized density profile significantly more complex than a simple exponential decay. These results are confirmed by large-scale and long-time numerical calculations. They shed new light on recent experiments with ultracold atoms and may impact their analysis

    Anderson localization of matter waves in tailored disordered potentials

    Full text link
    We show that, in contrast to immediate intuition, Anderson localization of noninteracting particles induced by a disordered potential in free space can increase (i.e., the localization length can decrease) when the particle energy increases, for appropriately tailored disorder correlations. We predict the effect in one, two, and three dimensions, and propose a simple method to observe it using ultracold atoms placed in optical disorder. The increase of localization with the particle energy can serve to discriminate quantum versus classical localization

    Symmetry-broken states in a system of interacting bosons on a two-leg ladder with a uniform Abelian gauge field

    Get PDF
    We study the quantum phases of bosons with repulsive contact interactions on a two-leg ladder in the presence of a uniform Abelian gauge field. The model realizes many interesting states, including Meissner phases, vortex fluids, vortex lattices, charge density waves, and the biased-ladder phase. Our work focuses on the subset of these states that breaks a discrete symmetry. We use density matrix renormalization group simulations to demonstrate the existence of three vortex-lattice states at different vortex densities and we characterize the phase transitions from these phases into neighboring states. Furthermore, we provide an intuitive explanation of the chiral-current reversal effect that is tied to some of these vortex lattices. We also study a charge-density-wave state that exists at 1/4 particle filling at large interaction strengths and flux values close to half a flux quantum. By changing the system parameters, this state can transition into a completely gapped vortex-lattice Mott-insulating state. We elucidate the stability of these phases against nearest-neighbor interactions on the rungs of the ladder relevant for experimental realizations with a synthetic lattice dimension. A charge-density-wave state at 1/3 particle filling can be stabilized for flux values close to half a flux quantum and for very strong on-site interactions in the presence of strong repulsion on the rungs. Finally, we analytically describe the emergence of these phases in the low-density regime, and, in particular, we obtain the boundaries of the biased-ladder phase, i.e., the phase that features a density imbalance between the legs. We make contact with recent quantum-gas experiments that realized related models and discuss signatures of these quantum states in experimentally accessible observables. © 2016 American Physical Society

    Three-dimensional localization of ultracold atoms in an optical disordered potential

    Full text link
    We report a study of three-dimensional (3D) localization of ultracold atoms suspended against gravity, and released in a 3D optical disordered potential with short correlation lengths in all directions. We observe density profiles composed of a steady localized part and a diffusive part. Our observations are compatible with the self-consistent theory of Anderson localization, taking into account the specific features of the experiment, and in particular the broad energy distribution of the atoms placed in the disordered potential. The localization we observe cannot be interpreted as trapping of particles with energy below the classical percolation threshold.Comment: published in Nature Physics; The present version is the initial manuscript (unchanged compared to version 1); The published version is available online at http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2256.htm
    corecore