2 research outputs found

    How to Manage a Large Scale Beam Line Consolidation in a Highly Activated Area?

    No full text
    The TDC2/TCC2 consolidation is a good example showing how the complexity of interventions in high radiation areas has increased over the last five years. Due to its duration, its dispersion, the diversity of the teams involved, the fixed deadlines, the risks and external constraints, this worksite prefigures large scale-interventions in the LHC during long shutdown 2 (LS2) and even more LS3. The paper describes the three main project phases: preparation, execution (including monitoring and control) and closure emphasizing the indispensable steps in each stage. It also explains why integrating scope, schedule and dose into a single baseline is of prime importance and shows how to manage and monitor the radiation safety performance of the various interventions throughout the execution phase. Eventually, some recommendations are formulated in order to better accommodate the design of high radiation areas to their operation and maintenance constraints

    CERN BDF Prototype Target Operation, Removal and Autopsy Steps

    No full text
    The Beam Dump Facility (BDF), currently in the study phase, is a proposed general-purpose fixed target facility at CERN. Initially will host the Search for Hidden Particles (SHiP) experiment, intended to investigate the origin of dark matter and other weakly interacting particles. The BDF particle production target is located at the core of the facility and is employed to fully absorb the high intensity (400 GeV/c) Super Proton Synchrotron (SPS) beam. To validate the design of the production target, a downscaled prototype was tested with the beam at CERN in 2018 in the North Area primary area in a dedicated test at 35 kW average beam power. This contribution details the BDF prototype target operation, fully remote removal intervention, and foreseen post-irradiation examination plans
    corecore