231 research outputs found
Zig-zag Sort: A Simple Deterministic Data-Oblivious Sorting Algorithm Running in O(n log n) Time
We describe and analyze Zig-zag Sort--a deterministic data-oblivious sorting
algorithm running in O(n log n) time that is arguably simpler than previously
known algorithms with similar properties, which are based on the AKS sorting
network. Because it is data-oblivious and deterministic, Zig-zag Sort can be
implemented as a simple O(n log n)-size sorting network, thereby providing a
solution to an open problem posed by Incerpi and Sedgewick in 1985. In
addition, Zig-zag Sort is a variant of Shellsort, and is, in fact, the first
deterministic Shellsort variant running in O(n log n) time. The existence of
such an algorithm was posed as an open problem by Plaxton et al. in 1992 and
also by Sedgewick in 1996. More relevant for today, however, is the fact that
the existence of a simple data-oblivious deterministic sorting algorithm
running in O(n log n) time simplifies the inner-loop computation in several
proposed oblivious-RAM simulation methods (which utilize AKS sorting networks),
and this, in turn, implies simplified mechanisms for privacy-preserving data
outsourcing in several cloud computing applications. We provide both
constructive and non-constructive implementations of Zig-zag Sort, based on the
existence of a circuit known as an epsilon-halver, such that the constant
factors in our constructive implementations are orders of magnitude smaller
than those for constructive variants of the AKS sorting network, which are also
based on the use of epsilon-halvers.Comment: Appearing in ACM Symp. on Theory of Computing (STOC) 201
Closed classes of functions, generalized constraints and clusters
Classes of functions of several variables on arbitrary non-empty domains that
are closed under permutation of variables and addition of dummy variables are
characterized in terms of generalized constraints, and hereby Hellerstein's
Galois theory of functions and generalized constraints is extended to infinite
domains. Furthermore, classes of operations on arbitrary non-empty domains that
are closed under permutation of variables, addition of dummy variables and
composition are characterized in terms of clusters, and a Galois connection is
established between operations and clusters.Comment: 21 page
Redundancy and error resilience in Boolean Networks
We consider the effect of noise in sparse Boolean Networks with redundant
functions. We show that they always exhibit a non-zero error level, and the
dynamics undergoes a phase transition from non-ergodicity to ergodicity, as a
function of noise, after which the system is no longer capable of preserving a
memory if its initial state. We obtain upper-bounds on the critical value of
noise for networks of different sparsity.Comment: 4 pages, 5 figure
Effective Theories for Circuits and Automata
Abstracting an effective theory from a complicated process is central to the
study of complexity. Even when the underlying mechanisms are understood, or at
least measurable, the presence of dissipation and irreversibility in
biological, computational and social systems makes the problem harder. Here we
demonstrate the construction of effective theories in the presence of both
irreversibility and noise, in a dynamical model with underlying feedback. We
use the Krohn-Rhodes theorem to show how the composition of underlying
mechanisms can lead to innovations in the emergent effective theory. We show
how dissipation and irreversibility fundamentally limit the lifetimes of these
emergent structures, even though, on short timescales, the group properties may
be enriched compared to their noiseless counterparts.Comment: 11 pages, 9 figure
Computing with and without arbitrary large numbers
In the study of random access machines (RAMs) it has been shown that the
availability of an extra input integer, having no special properties other than
being sufficiently large, is enough to reduce the computational complexity of
some problems. However, this has only been shown so far for specific problems.
We provide a characterization of the power of such extra inputs for general
problems. To do so, we first correct a classical result by Simon and Szegedy
(1992) as well as one by Simon (1981). In the former we show mistakes in the
proof and correct these by an entirely new construction, with no great change
to the results. In the latter, the original proof direction stands with only
minor modifications, but the new results are far stronger than those of Simon
(1981). In both cases, the new constructions provide the theoretical tools
required to characterize the power of arbitrary large numbers.Comment: 12 pages (main text) + 30 pages (appendices), 1 figure. Extended
abstract. The full paper was presented at TAMC 2013. (Reference given is for
the paper version, as it appears in the proceedings.
Large random simplicial complexes, I
In this paper we introduce a new model of random simplicial complexes
depending on multiple probability parameters. This model includes the
well-known Linial - Meshulam random simplicial complexes and random clique
complexes as special cases. Topological and geometric properties of a
multi-parameter random simplicial complex depend on the whole combination of
the probability parameters and the thresholds for topological properties are
convex sets rather than numbers (as in all previously known models). We discuss
the containment properties, density domains and dimension of the random
simplicial complexes.Comment: 21 pages, 6 figure
Random geometric complexes
We study the expected topological properties of Cech and Vietoris-Rips
complexes built on i.i.d. random points in R^d. We find higher dimensional
analogues of known results for connectivity and component counts for random
geometric graphs. However, higher homology H_k is not monotone when k > 0. In
particular for every k > 0 we exhibit two thresholds, one where homology passes
from vanishing to nonvanishing, and another where it passes back to vanishing.
We give asymptotic formulas for the expectation of the Betti numbers in the
sparser regimes, and bounds in the denser regimes. The main technical
contribution of the article is in the application of discrete Morse theory in
geometric probability.Comment: 26 pages, 3 figures, final revisions, to appear in Discrete &
Computational Geometr
All Inequalities for the Relative Entropy
The relative entropy of two n-party quantum states is an important quantity
exhibiting, for example, the extent to which the two states are different. The
relative entropy of the states formed by reducing two n-party to a smaller
number of parties is always less than or equal to the relative entropy of
the two original n-party states. This is the monotonicity of relative entropy.
Using techniques from convex geometry, we prove that monotonicity under
restrictions is the only general inequality satisfied by relative entropies. In
doing so we make a connection to secret sharing schemes with general access
structures.
A suprising outcome is that the structure of allowed relative entropy values
of subsets of multiparty states is much simpler than the structure of allowed
entropy values. And the structure of allowed relative entropy values (unlike
that of entropies) is the same for classical probability distributions and
quantum states.Comment: 15 pages, 3 embedded eps figure
Parametrised Complexity of Model Checking and Satisfiability in Propositional Dependence Logic
In this paper, we initiate a systematic study of the parametrised complexity
in the field of Dependence Logics which finds its origin in the Dependence
Logic of V\"a\"an\"anen from 2007. We study a propositional variant of this
logic (PDL) and investigate a variety of parametrisations with respect to the
central decision problems. The model checking problem (MC) of PDL is
NP-complete. The subject of this research is to identify a list of
parametrisations (formula-size, treewidth, treedepth, team-size, number of
variables) under which MC becomes fixed-parameter tractable. Furthermore, we
show that the number of disjunctions or the arity of dependence atoms
(dep-arity) as a parameter both yield a paraNP-completeness result. Then, we
consider the satisfiability problem (SAT) showing a different picture: under
team-size, or dep-arity SAT is paraNP-complete whereas under all other
mentioned parameters the problem is in FPT. Finally, we introduce a variant of
the satisfiability problem, asking for teams of a given size, and show for this
problem an almost complete picture.Comment: Update includes refined result
- …