430 research outputs found

    REAKTOREN ZUR SUBSTANZPOLYMERISATION AM BEISPIEL VON ACRYLNITRIL

    Get PDF

    Magnetic Properties of Pr0.7Ca0.3MnO3/SrRuO3 Superlattices

    Full text link
    High-quality Pr0.7Ca0.3MnO3/SrRuO3 superlattices were fabricated by pulsed laser deposition and were investigated by high-resolution transmission electron microscopy and SQUID magnetometry. Superlattices with orthorhombic and tetragonal SrRuO3 layers were investigated. The superlattices grew coherently; in the growth direction Pr0.7Ca0.3MnO3 layers were terminated by MnO2- and SrRuO3 layers by RuO2-planes. All superlattices showed antiferromagnetic interlayer coupling in low magnetic fields. The coupling strength was significantly higher for orthorhombic than for tetragonal symmetry of the SrRuO3 layers. The strong interlayer exchange coupling in the superlattice with orthorhombic SrRuO3 layers led to a magnetization reversal mechanism with a partially inverted hysteresis loop.Comment: 12 pages, 4 figure

    Rezension: Prutsch, Ursula / Rodrigues-Moura, Enrique (2013): Brasilien. Eine Kulturgeschichte

    Get PDF

    Orthorhombic to tetragonal transition of SrRuO3 layers in Pr0.7Ca0.3MnO3/SrRuO3 superlattices

    Full text link
    High-quality Pr0.7Ca0.3MnO3/SrRuO3 superlattices with ultrathin layers were fabricated by pulsed laser deposition on SrTiO3 substrates. The superlattices were studied by atomically resolved scanning transmission electron microscopy, high-resolution transmission electron microscopy, resistivity and magnetoresistance measurements. The superlattices grew coherently without growth defects. Viewed along the growth direction, SrRuO3 and Pr0.7Ca0.3MnO3 layers were terminated by RuO2 and MnO2, respectively, which imposes a unique structure to their interfaces. Superlattices with a constant thickness of the SrRuO3 layers, but varying thickness of the Pr0.7Ca0.3MnO3 layers showed a change of crystalline symmetry of the SrRuO3 layers. At a low Pr0.7Ca0.3MnO3 layer thickness of 1.5 nm transmission electron microscopy proved the SrRuO3 layers to be orthorhombic, whereas these were non-orthorhombic for a Pr0.7Ca0.3MnO3 layer thickness of 4.0 nm. Angular magnetoresistance measurements showed orthorhombic (with small monoclinic distortion) symmetry in the first case and tetragonal symmetry of the SrRuO3 layers in the second case. Mechanisms driving this orthorhombic to tetragonal transition are briefly discussed.Comment: 23 pages, 12 figure

    Ultra-thin film NbN depositions for HEB heterodyne mixer on Si-substrates

    Get PDF
    The key of improving hot-electron bolometer (HEB) mixer performance lies inevitably in the quality of ultra-thin NbN films itself. This work presents a thorough investigation of crucial process parameters of NbN films deposited by means of reactive DC-sputtering on Si-substrates at elevated temperatures up to 750°C. The polycrystalline NbN films with thickness of 4 to 10nm were characterized by DC resistivity measurements, ellipsometry and high resolution transmission electron microscopy (HRTEM) in order to confirm thickness and film structure. Since the macroscopic properties such as critical temperature, thickness as well as the transition width to the superconducting state are directly linked to HEB mixer noise temperature and IF bandwidth, a set of experiments were conducted to enhance aforementioned properties. We considered deposition temperature, RF biasing, nitrogen and argon partial and total pressure during deposition as major process variable parameters. Careful optimization of the deposition conditions allowed setting up a process resulting in high-quality NbN ultra-thin films with thickness of 5.5nm exhibiting Tc of 10.5K. Moreover, the transition width could be kept as low as 1.4K. The produced films were stored at ambient conditions and re-characterized over a period of 4 month without measurable degradation

    Strong and ductile platelet-reinforced polymer films inspired by nature: Microstructure and mechanical properties

    Get PDF
    The unique structure and mechanical properties of platelet-reinforced biological materials such as bone and seashells have motivated the development of artificial composites exhibiting new, unusual mechanical behavior. On the basis of designing principles found in these biological structures, we combined high-performance artificial building blocks to fabricate platelet-reinforced polymer matrix composites that exhibit simultaneously high tensile strength and ductility. The mechanical properties are correlated with the underlying microstructure of the composites before and after mechanical loading using transmission electron microscopy. The critical role of the strength of the platelet-polymer interface and its dependence on the platelet surface chemistry and the type of matrix polymer are studied. Thin multilayered films with highly oriented platelets were produced through the bottom-up layer-by-layer assembly of submicrometer-thin alumina platelets and either polyimide or chitosan as polymer matrix. The tensile strength and strain at rupture of the prepared composites exceeded that of nacre, whereas the elastic modulus reached values similar to that of lamellar bones. In contrast to the brittle failure of clay-reinforced composites of similar or higher strength and stiffness, our composites exhibit plastic deformation in the range of 2-90% before failure. In addition to the high reinforcing efficiency and ductility achieved, several toughening mechanisms were identified in fractured composites, namely friction, debonding, and formation of microcracks at the platelet-polymer interface, as well as plastic deformation and void formation within the continuous polymeric phase. The combination of high strength, ductility, and toughness was achieved by selecting platelets that exhibit an aspect ratio high enough to carry significant load but small enough to allow for fracture under the platelet pull-out mode. At high concentrations of platelets, the ductility gets lost because of out-of-plane misalignment of the platelets and incorporation of voids in the microstructure during processing. The designing principles applied in this study can potentially be extended to other types of platelets and polymers to obtain new, hybrid materials with tunable mechanical propertie

    Electronic properties of dislocations

    Get PDF
    • …
    corecore