107 research outputs found
An integrated approach to modelling the fluid-structure interaction of a collapsible tube
The well known collapsible tube experiment was conducted to obtain flow, pressure and materials property data for steady state conditions. These were then used as the boundary conditions for a fully coupled fluid-structure interaction (FSI) model using a propriety computer code, LS-DYNA. The shape profiles for the tube were also recorded. In order to obtain similar collapse modes to the experiment, it was necessary to model the tube flat, and then inflate it into a circular profile, leaving residual stresses in the walls. The profile shape then agreed well with the experimental ones. Two departures from the physical properties were required to reduce computer time to an acceptable level. One of these was the lowering of the speed of sound by two orders of magnitude which, due to the low velocities involved, still left the mach number below 0.2. The other was to increase the thickness of the tube to prevent the numerical collapse of elements. A compensation for this was made by lowering the Young's modulus for the tube material. Overall the results are qualitatively good. They give an indication of the power of the current FSI algorithms and the need to combine experiment and computer models in order to maximise the information that can be extracted both in terms of quantity and quality
Experimental Study of the Shortest Reset Word of Random Automata
In this paper we describe an approach to finding the shortest reset word of a
finite synchronizing automaton by using a SAT solver. We use this approach to
perform an experimental study of the length of the shortest reset word of a
finite synchronizing automaton. The largest automata we considered had 100
states. The results of the experiments allow us to formulate a hypothesis that
the length of the shortest reset word of a random finite automaton with
states and 2 input letters with high probability is sublinear with respect to
and can be estimated as $1.95 n^{0.55}.
Qualitative theory testing as mixed-method research
While the concept of mixed-methods research is more usually associated with combining quantitative and qualitative approaches, this paper outlines a study that mixed methods by undertaking qualitative theory testing and derivation when examining the relationship between health promotion theory and hospital nursing practice. Thus, it is concerned with relating the metatheoretical aspects of the debate and not with the pragmatic aspects of the research and concomitant methods. A deductive–inductive–deductive design, based on the theory–research–theory strategy of Meleis (1985), tested, revised and developed for nursing established health promotion theory using theory-testing criteria. To complement the methodological mix, the study also used the theory (i.e. a health-promotion taxonomy) as a framework to contextualise the findings rather than generate theory in the way associated with interpretative inquiry. While inconsistent with the traditional view linking theory testing with quantitative, objective epistemology, the process enabled a theoretically robust health-promotion taxonomy to be synthesised and advanced for use in nursing in relation to a paradigm of social thought
Two-proton correlations from 158 AGeV Pb+Pb central collisions
The two-proton correlation function at midrapidity from Pb+Pb central
collisions at 158 AGeV has been measured by the NA49 experiment. The results
are compared to model predictions from static thermal Gaussian proton source
distributions and transport models RQMD and VENUS. An effective proton source
size is determined by minimizing CHI-square/ndf between the correlation
functions of the data and those calculated for the Gaussian sources, yielding
3.85 +-0.15(stat.) +0.60-0.25(syst.) fm. Both the RQMD and the VENUS model are
consistent with the data within the error in the correlation peak region.Comment: RevTeX style, 6 pages, 4 figures, 1 table. More discussion are added
about the structure on the tail of the correlation function. The systematic
error is revised. To appear in Phys. Lett.
Event-by-event fluctuations of average transverse momentum in central Pb+Pb collisions at 158 GeV per nucleon
We present first data on event-by-event fluctuations in the average
transverse momentum of charged particles produced in Pb+Pb collisions at the
CERN SPS. This measurement provides previously unavailable information allowing
sensitive tests of microscopic and thermodynamic collision models and to search
for fluctuations expected to occur in the vicinity of the predicted QCD phase
transition. We find that the observed variance of the event-by-event average
transverse momentum is consistent with independent particle production modified
by the known two-particle correlations due to quantum statistics and final
state interactions and folded with the resolution of the NA49 apparatus. For
two specific models of non-statistical fluctuations in transverse momentum
limits are derived in terms of fluctuation amplitude. We show that a
significant part of the parameter space for a model of isospin fluctuations
predicted as a consequence of chiral symmetry restoration in a non-equilibrium
scenario is excluded by our measurement.Comment: 6 pages, 2 figures, submitted to Phys. Lett.
CONCEPTT: Continuous Glucose Monitoring in Women with Type 1 Diabetes in Pregnancy Trial: A multi-center, multi-national, randomized controlled trial - Study protocol.
BACKGROUND: Women with type 1 diabetes strive for optimal glycemic control before and during pregnancy to avoid adverse obstetric and perinatal outcomes. For most women, optimal glycemic control is challenging to achieve and maintain. The aim of this study is to determine whether the use of real-time continuous glucose monitoring (RT-CGM) will improve glycemic control in women with type 1 diabetes who are pregnant or planning pregnancy. METHODS/DESIGN: A multi-center, open label, randomized, controlled trial of women with type 1 diabetes who are either planning pregnancy with an HbA1c of 7.0 % to ≤10.0 % (53 to ≤ 86 mmol/mol) or are in early pregnancy (<13 weeks 6 days) with an HbA1c of 6.5 % to ≤10.0 % (48 to ≤ 86 mmol/mol). Participants will be randomized to either RT-CGM alongside conventional intermittent home glucose monitoring (HGM), or HGM alone. Eligible women will wear a CGM which does not display the glucose result for 6 days during the run-in phase. To be eligible for randomization, a minimum of 4 HGM measurements per day and a minimum of 96 hours total with 24 hours overnight (11 pm-7 am) of CGM glucose values are required. Those meeting these criteria are randomized to RT- CGM or HGM. A total of 324 women will be recruited (110 planning pregnancy, 214 pregnant). This takes into account 15 and 20 % attrition rates for the planning pregnancy and pregnant cohorts and will detect a clinically relevant 0.5 % difference between groups at 90 % power with 5 % significance. Randomization will stratify for type of insulin treatment (pump or multiple daily injections) and baseline HbA1c. Analyses will be performed according to intention to treat. The primary outcome is the change in glycemic control as measured by HbA1c from baseline to 24 weeks or conception in women planning pregnancy, and from baseline to 34 weeks gestation during pregnancy. Secondary outcomes include maternal hypoglycemia, CGM time in, above and below target (3.5-7.8 mmol/l), glucose variability measures, maternal and neonatal outcomes. DISCUSSION: This will be the first international multicenter randomized controlled trial to evaluate the impact of RT- CGM before and during pregnancy in women with type 1 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01788527 Registration Date: December 19, 2012
NA49 Results on Single Particle and Correlation Measurements in Central Pb+Pb Collisions
Single-particle spectra and two-particle correlation functions measured by the NA49 collaboration in central Pb+Pb collisions at 158 GeV/nucleon are presented. These measurements are used to study the kinetic and chemical freeze-out conditions in heavy ion collisions. We conclude that large baryon stopping, high baryon density and strong transverse radial flow are achieved in central Pb+Pb collisions at the SPS.Single-particle spectra and two-particle correlation functions measured by the NA49 collaboration in central Pb+Pb collisions at 158 GeV/nucleon are presented. These measurements are used to study the kinetic and chemical freeze-out conditions in heavy ion collisions. We conclude that large baryon stopping, high baryon density and strong transverse radial flow are achieved in central Pb+Pb collisions at the SPS
Xi and Xi-bar Production in 158 GeV/Nucleon Pb+Pb Collisions
We report measurements of Xi and Xi-bar hyperon absolute yields as a function
of rapidity in 158 GeV/c Pb+Pb collisions. At midrapidity, dN/dy = 2.29 +/-
0.12 for Xi, and 0.52 +/- 0.05 for Xi-bar, leading to the ratio of Xi-bar/Xi =
0.23 +/- 0.03. Inverse slope parameters fitted to the measured transverse mass
spectra are of the order of 300 MeV near mid-rapidity. The estimated total
yield of Xi particles in Pb+Pb central interactions amounts to 7.4 +/- 1.0 per
collision. Comparison to Xi production in properly scaled p+p reactions at the
same energy reveals a dramatic enhancement (about one order of magnitude) of Xi
production in Pb+Pb central collisions over elementary hadron interactions.Comment: 15 page
The ATLAS trigger system for LHC Run 3 and trigger performance in 2022
The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)
Observation of quantum entanglement with top quarks at the ATLAS detector
Entanglement is a key feature of quantum mechanics with applications in fields such as metrology, cryptography, quantum information and quantum computation. It has been observed in a wide variety of systems and length scales, ranging from the microscopic to the macroscopic. However, entanglement remains largely unexplored at the highest accessible energy scales. Here we report the highest-energy observation of entanglement, in top–antitop quark events produced at the Large Hadron Collider, using a proton–proton collision dataset with a centre-of-mass energy of √s = 13 TeV and an integrated luminosity of 140 inverse femtobarns (fb)−1 recorded with the ATLAS experiment. Spin entanglement is detected from the measurement of a single observable D, inferred from the angle between the charged leptons in their parent top- and antitop-quark rest frames. The observable is measured in a narrow interval around the top–antitop quark production threshold, at which the entanglement detection is expected to be significant. It is reported in a fiducial phase space defined with stable particles to minimize the uncertainties that stem from the limitations of the Monte Carlo event generators and the parton shower model in modelling top-quark pair production. The entanglement marker is measured to be D = −0.537 ± 0.002 (stat.) ± 0.019 (syst.) for 340 GeV < mtt < 380 GeV. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes the first observation of entanglement in a pair of quarks and the highest-energy observation of entanglement so far
- …