24 research outputs found

    Effects of graphene oxide nanofilm and chicken embryo muscle extract on muscle progenitor cell differentiation and contraction

    Get PDF
    Finding an effective muscle regeneration technique is a priority for regenerative medicine. It is known that the key factors determining tissue formation include cells, capable of proliferating and/or differentiating, a niche (surface) allowing their colonization and growth factors. The interaction between these factors, especially between the surface of the artificial niche and growth factors, is not entirely clear. Moreover, it seems that the use of a complex of complementary growth factors instead of a few strictly defined ones could increase the effectiveness of tissue maturation, including muscle tissue. In this study, we evaluated whether graphene oxide (GO) nanofilm, chicken embryo muscle extract (CEME), and GO combined with CEME would affect the differentiation and functional maturation of muscle precursor cells, as well as the ability to spontaneously contract a pseudo-tissue muscle. CEME was extracted on day 18 of embryogenesis. Muscle cells obtained from an 8-day-old chicken embryo limb bud were treated with GO and CEME. Cell morphology and differentiation were observed using different microscopy methods. Cytotoxicity and viability of cells were measured by lactate dehydrogenase and Vybrant Cell Proliferation assays. Gene expression of myogenic regulatory genes was measured by Real-Time PCR. Our results demonstrate that CEME, independent of the culture surface, was the main factor influencing the intense differentiation of muscle progenitor cells. The present results, for the first time, clearly demonstrated that the cultured tissue-like structure was capable of inducing contractions without externally applied impulses. It has been indicated that a small amount of CEME in media (about 1%) allows the culture of pseudo-tissue muscle capable of spontaneous contraction. The study showed that the graphene oxide may be used as a niche for differentiating muscle cells, but the decisive influence on the maturation of muscle tissue, especially muscle contractions, depends on the complexity of the applied growth factors

    Observation of enhanced subthreshold K+ production in central collisions between heavy nuclei

    Get PDF
    In the very heavy collision system 197Au+197Au the K+ production process was studied as a function of impact parameter at 1 GeV/nucleon, a beam energy well below the free N-N threshold. The K+ multiplicity increases more than linearly with the number of participant nucleons and the K+/ pi + ratio rises significantly when going from peripheral to central collisions. The measured K+ double differential cross section is enhanced by a factor of 6 compared to microscopic transport calculations if secondary processes (Delta N-->K Lambda N and Delta Delta -->K Lambda N) are ignored

    The Application of FT-IR Spectroscopy for Quality Control of Flours Obtained from Polish Producers

    No full text
    Samples of wheat, spelt, rye, and triticale flours produced by different Polish mills were studied by both classic chemical methods and FT-IR MIR spectroscopy. An attempt was made to statistically correlate FT-IR spectral data with reference data with regard to content of various components, for example, proteins, fats, ash, and fatty acids as well as properties such as moisture, falling number, and energetic value. This correlation resulted in calibrated and validated statistical models for versatile evaluation of unknown flour samples. The calibration data set was used to construct calibration models with use of the CSR and the PLS with the leave one-out, cross-validation techniques. The calibrated models were validated with a validation data set. The results obtained confirmed that application of statistical models based on MIR spectral data is a robust, accurate, precise, rapid, inexpensive, and convenient methodology for determination of flour characteristics, as well as for detection of content of selected flour ingredients. The obtained models’ characteristics were as follows: R2=0.97, PRESS = 2.14; R2=0.96, PRESS = 0.69; R2=0.95, PRESS = 1.27; R2=0.94, PRESS = 0.76, for content of proteins, lipids, ash, and moisture level, respectively. Best results of CSR models were obtained for protein, ash, and crude fat (R2=0.86; 0.82; and 0.78, resp.)

    Accumulation of Plastics and Trace Elements in the Mangrove Forests of Bima City Bay, Indonesia

    No full text
    Pollution with microplastics (MPs), nanoplastics (NPs) and trace elements (TEs) remains a considerable threat for mangrove biomes due to their capability to capture pollutants suspended in the water. This study investigated the abundance and composition of plastics and TEs contained in the soil and pneumatophores of Avicennia alba sampled in experimental areas (hotel, market, river mouth, port, and rural areas) differentiated in anthropopressure, located in Bima Bay, Indonesia. Polymers were extracted and analyzed with the use of a modified sediment isolation method and Fourier transform infrared spectroscopy. Trace elements were detected by inductively coupled plasma optical emission spectrometry. The lowest and highest quantities of MPs in soil were recorded in rural and hotel areas, respectively. The rural site was characterized by distinct MP composition. The amounts of sediment-trapped MPs in the tested localities should be considered as high, and the recognized polymers partly corresponded with local human activity. Concentrations of seven plastic types found in plant tissues did not entirely reflect sediment pollution with nine types, suggesting a selective accumulation (particularly of polyamides and vinylidene chloride) and substance migration from other areas. Very low concentrations of non-biogenic TEs were observed, both in sediments and pneumatophores. The results highlight the relevance of environmental contamination with plastics

    The combined use of GC, PDSC and FT-IR techniques to characterize fat extracted from commercial complete dry pet food for adult cats

    No full text
    This study aims to compare the quality of fat extracted from different priced dry pet food for adult cats through classical and instrumental methods: pressure differential scanning calorimetry (PDSC), Fourier transform infrared spectroscopy (FT-IR) or gas chromatography (GC). Fat extracted from pet food was examined for induction time (IT), fatty acid composition, free fatty acid (FFA) content and peroxide value with the use of PDSC, GC, acid–base and iodometric titration, respectively. FT-IR data from the selected spectral regions correlate with the value of oxidation IT or the content of FFA. This resulted in construction of a reference model for IT with the following statistical features: Rcalibration = 0.917 (RMSEC = 28.0) and Rvalidation = 0.841 (RMSEP = 34.6). For fatty acid content, model statistics were as follows: Rcalibration = 0.912 (RMSEC = 0.61) and Rvalidation = 0.856 (RMSEP = 0.75). Discriminant model that uses spectral data alone, calculated with performance index 83.7 allowed distinguishing the studied pet food samples due to the price. Studies conducted proved PDSC and IR as reliable analytical techniques to control and monitor the quality of dry pet food for cats. Considering quality of the studied samples, it was proved that low-priced pet foods can be stored longer than premium-priced ones, while former is nutritionally more beneficial for adult cats

    The effect of silica-calcite sedimentary rock contained in the chicken broiler diet on the overall quality of chicken muscles

    No full text
    Opoka is a silica-calcite sedimentary rock chemically and structurally similar to diatomaceous earth (DE), composed mainly of silicon dioxide (SiO2), calcium carbonate (CaCO3), amorphous SiO. Opoka occurs predominantly in South Eastern Europe and Russia. Due to these specific properties investigation on the effect of opoka-enriched diet on chemical composition and overall quality of breast and leg muscles of broilers was initiated. Working samples showed a statistically significant increase in ash content or water content and a decrease in lipid content in the leg muscles of both male and female broilers (P<0.01). Furthermore, the addition of opoka to the diet increased WHC of leg muscles in females and hardness or chewiness of these muscles in both genders (P<0.05). The supplementation of broiler diet with opoka can be effectively applied to modify texture features of leg and breast muscle tissue which might, in turn, serve to regulate the nutritional and technological value of chicken meat
    corecore