7 research outputs found
Serum amino acid profiling in differentiating clinical outcomes of multiple sclerosis
Aim of the study. Amino acid metabolism is crucial for regulating immune responses and can be monitored in blood serum samples. This study aimed to analyse serum amino acid profiles in people with multiple sclerosis (pwMS), taking into account differences depending on the disease outcomes.
Clinical rationale for the study. Serum amino acid profiling is a promising, reproducible and minimally invasive technology, available at different stages of the disease, enabling the search for a specific biomarker to differentiate MS clinical outcomes. Material and methods. The serum concentrations of 29 amino acids were determined using high-performance liquid chromatography mass spectrometry.
Results. A total of 121 pwMS (41 relapsing-remitting MSâRRMS; 55 secondary progressive MS - SPMS; and 25 primary progressive MSâRRMS) with a median Expanded Disability Status Scale (EDSS) score of 6 and 53 healthy controls (HCs) were included. We found significantly higher serum total amino acids concentrations in pwMS compared to HCs. Serum concentrations of arginine, 1-methyl-L-histidine and proline were higher in pwMS, while circulating citrulline, α-aminobutyric acid and tryptophan were lower in pwMS. We observed significant differences in serum total amino acids concentrations depending on MS type, with the highest level in the PPMS group and the lowest in the RRMS group. We found significantly higher serum levels of beta-aminoisobutyric acid in PPMS patients compared to those with RRMS and SPMS, and significantly higher serum levels of aspartic acid in PPMS patients compared to RRMS patients. From visual inspection, no trend was observed in total amino acids concentration with respect to the EDSS score. When analysing serum total amino acids concentration in pwMS with EDSS †5 compared to those with EDSS > 5, no significant differences were found.
Conclusions and clinical implications. Amino acid metabolism is altered in pwMS and depends on the clinical type of the disease. Further studies are needed to determine whether serum metabolomic profiling of amino acids may have an application in the search for clinical phenotype-specific MS biomarkers
Rapid Targeted Method of Detecting Abused Piperazine Designer Drugs
Piperazine derivatives belong to the popular psychostimulating compounds from the group of designer drugs. They are an alternative to illegal drugs such as ecstasy and amphetamines. They are being searched by consumers for recreational use due to their stimulating and hallucinogenic effects. Many NPS-related poisonings and deaths have been reported where piperazines have been found. However, a major problem is the potential lack of laboratory confirmation of the involvement of piperazine derivatives in the occurrence of poisoning. Although many methods have been published, piperazine derivatives are not always included in a routine analytical approach or targeted toxicological analysis. There is an increasing need to provide qualitative evidence for the presence of piperazine derivatives and to ensure reproducible quantification. This article describes a new rapid method of detecting piperazine derivatives in biological material, using LC-MS. All target analytes were separated in a 15 min run time and identified based on the precursor ion, at least two product ions, and the retention time. Stable isotopically labeled (SIL) internal standards: BZP-D7, mCPP-D8 and TFMPP-D4 were used for analysis, obtaining the highest level of confidence in the results. The proposed detection method provides the analytical confirmation of poisoning with piperazine designer drugs
Comparison of LC-MS and LC-DAD Methods of Detecting Abused Piperazine Designer Drugs
Recreational use of piperazine designer drugs is a serious threat to human health. These compounds act on the body in a similar fashion to illegal drugs. They induce psychostimulatory effects as well as visual and auditory hallucinations to varying degrees. In many cases of poisoning and deaths, the presence of two or even several psychoactive substances have been demonstrated. Piperazine derivatives are often found in such mixtures and pose a great analytical problem during their identification. Additionally, some piperazine derivatives can be detected in biological material as a result of metabolic changes to related drugs. Therefore, it is necessary to correctly identify these compounds and ensure repeatability of determinations. This article presents a comparison of the methods used to detect abused piperazine designer drugs using liquid chromatography in combination with a diode-array detector (LC-DAD) or mass spectrometer (LC-MS). Each of methods can be used independently for determinations, obtaining reliable results in a short time of analysis. These methods can also complement each other, providing qualitative and quantitative confirmation of results. The proposed methods provide analytical confirmation of poisoning and may be helpful in toxicological diagnostics
Comparative Analysis of Amino Acid Profiles in Patients with Glioblastoma and Meningioma Using Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC-ESI-MS/MS)
Brain tumors account for 1% of all cancers diagnosed de novo. Due to the specificity of the anatomical area in which they grow, they can cause significant neurological disorders and lead to poor functional status and disability. Regardless of the results of biochemical markers of intracranial neoplasms, they are currently of no diagnostic significance. The aim of the study was to use LC-ESI-MS/MS in conjunction with multivariate statistical analyses to examine changes in amino acid metabolic profiles between patients with glioblastoma, meningioma, and a group of patients treated for osteoarthritis of the spine as a control group. Comparative analysis of amino acids between patients with glioblastoma, meningioma, and the control group allowed for the identification of statistically significant differences in the amino acid profile, including both exogenous and endogenous amino acids. The amino acids that showed statistically significant differences (lysine, histidine, α-aminoadipic acid, phenylalanine) were evaluated for diagnostic usefulness based on the ROC curve. The best results were obtained for phenylalanine. Classification trees were used to build a model allowing for the correct classification of patients into the study group (patients with glioblastoma multiforme) and the control group, in which cysteine turned out to be the most important amino acid in the decision-making algorithm. Our results indicate amino acids that may prove valuable, used alone or in combination, toward improving the diagnosis of patients with glioma and meningioma. To better assess the potential utility of these markers, their performance requires further validation in a larger cohort of samples
Comparison of Pteridine Normalization Methods in Urine for Detection of Bladder Cancer
Pterin compounds belong to the group of biomarkers for which an increase in interest has been observed in recent years. Available literature data point to this group of compounds as potential biomarkers for cancer detection, although the biochemical justification for this claim is not yet fully understood. The aim of this study was to evaluate the usefulness of pterin compounds in the diagnosis of bladder cancer, with particular emphasis on the role of creatinine and the specific gravity of urine as factors for normalizing the concentration of pterin compounds in urine. The standardization of the concentration of pterin compounds to urine specific gravity allows the building of better classification models for screening patients with potential cancer of the bladder. Of the compounds that make up the pterin profile, isoxanthopterin appears to be a compound that can potentially be described as a biomarker of bladder cancer