11 research outputs found

    Complex interactions of cellular players in chronic Graft-versus-Host Disease

    Get PDF
    Chronic Graft-versus-Host Disease is a life-threatening inflammatory condition that affects many patients after allogeneic hematopoietic stem cell transplantation. Although we have made substantial progress in understanding disease pathogenesis and the role of specific immune cell subsets, treatment options are still limited. To date, we lack a global understanding of the interplay between the different cellular players involved, in the affected tissues and at different stages of disease development and progression. In this review we summarize our current knowledge on pathogenic and protective mechanisms elicited by the major involved immune subsets, being T cells, B cells, NK cells and antigen presenting cells, as well as the microbiome, with a special focus on intercellular communication of these cell types via extracellular vesicles as up-and-coming fields in chronic Graft-versus-Host Disease research. Lastly, we discuss the importance of understanding systemic and local aberrant cell communication during disease for defining better biomarkers and therapeutic targets, eventually enabling the design of personalized treatment schemes

    Soluble CD147 (BSG) as a Prognostic Marker in Multiple Myeloma

    No full text
    CD147 (basigin, BSG) is a membrane-bound glycoprotein involved in energy metabolism that plays a role in cancer cell survival. Its soluble form is a promising marker of some diseases, but it is otherwise poorly studied. CD147 is overexpressed in multiple myeloma (MM) and is known to affect MM progression, while its genetic variants are associated with MM survival. In the present study, we aimed to assess serum soluble CD147 (sCD147) expression as a potential marker in MM. We found that sCD147 level was higher in MM patients compared to healthy individuals. It was also higher in patients with more advanced disease (ISS III) compared to both patients with less advanced MM and healthy individuals, while its level was observed to drop after positive response to treatment. Patients with high sCD147 were characterized by worse progression-free survival. sCD147 level did not directly correlate with bone marrow CD147 mRNA expression. In conclusion, this study suggests that serum sCD147 may be a prognostic marker in MM

    BSG and MCT1 Genetic Variants Influence Survival in Multiple Myeloma Patients

    No full text
    Multiple myeloma (MM) is a haematologic malignancy characterized by the presence of atypical plasma cells. Basigin (BSG, CD147) controls lactate export through the monocarboxylic acid transporter 1 (MCT1, SLC16A1) and supports MM survival and proliferation. Additionally, BSG is implicated in response to treatment with immunomodulatory drugs (thalidomide and its derivatives). We investigated the role of single nucleotide polymorphisms (SNPs) in the gene coding for BSG and SLC16A1 in MM. Following an in silico analysis, eight SNPs (four in BSG and four in SLC16A1) predicted to have a functional effect were selected and analyzed in 135 MM patients and 135 healthy individuals. Alleles rs4919859 C, rs8637 G, and haplotype CG were associated with worse progression-free survival (p = 0.006, p = 0.017, p = 0.002, respectively), while rs7556664 A, rs7169 T and rs1049434 A (all in linkage disequilibrium (LD), r2 > 0.98) were associated with better overall survival (p = 0.021). Similar relationships were observed in thalidomide-treated patients. Moreover, rs4919859 C, rs8637 G, rs8259 A and the CG haplotype were more common in patients in stages II–III of the International Staging System (p < 0.05), while rs8259 A correlated with higher levels of β-2-microglobulin and creatinine (p < 0.05). Taken together, our results show that BSG and SLC16A1 variants affect survival, and may play an important role in MM

    Genetic variation of the gene coding for microRNA-204 (miR-204) is a risk factor in acute myeloid leukaemia

    No full text
    Abstract Background MicroRNAs (miRNAs or miRs) are small molecules known to be involved in post-transcriptional gene expression. Many of them have been shown to influence risk for various diseases. Recent studies suggest that lower expression of miR-204, a gene coding for miRNA-204, is correlated with shorter survival in patients with acute myeloid leukaemia (AML). This observation prompted us to analyse the effect of two polymorphisms of the miR-204 gene, one in the upstream flanking region (rs718447 A > G) and the other inside the gene itself (rs112062096 A > G), both also in intron 3 of the TRPM3 gene. Methods The study was conducted on DNA samples isolated from AML patients (n = 95) and healthy individuals (n = 148), who were genotyped using the Light SNiP assays. Results The miR-204 rs718447 GG homozygosity was found to constitute a risk factor associated with susceptibility to AML (73/95 vs 92/148, AML patients vs healthy controls, OR = 2.020, p = 0.017). Additionally, this genotype was more frequent in patients with subtypes M0-M1 in the French-American-British (FAB) classification as compared to patients with subtypes M2-M7 (23/25 vs 39/57, p = 0.026). We also found that presence of allele A was linked to longer survival of AML patients. Conclusions Our results show that polymorphism in miR-204 flanking region may constitute a risk and prognostic factor in AML

    Soluble CD147 (BSG) as a Prognostic Marker in Multiple Myeloma

    No full text
    CD147 (basigin, BSG) is a membrane-bound glycoprotein involved in energy metabolism that plays a role in cancer cell survival. Its soluble form is a promising marker of some diseases, but it is otherwise poorly studied. CD147 is overexpressed in multiple myeloma (MM) and is known to affect MM progression, while its genetic variants are associated with MM survival. In the present study, we aimed to assess serum soluble CD147 (sCD147) expression as a potential marker in MM. We found that sCD147 level was higher in MM patients compared to healthy individuals. It was also higher in patients with more advanced disease (ISS III) compared to both patients with less advanced MM and healthy individuals, while its level was observed to drop after positive response to treatment. Patients with high sCD147 were characterized by worse progression-free survival. sCD147 level did not directly correlate with bone marrow CD147 mRNA expression. In conclusion, this study suggests that serum sCD147 may be a prognostic marker in MM

    Telomere length and hTERT genetic variants as potential prognostic markers in multiple myeloma

    No full text
    Abstract Telomere dysfunction is a notable event observed in many cancers contributing to their genomic instability. A major factor controlling telomere stability is the human telomerase reverse transcriptase catalytic subunit (hTERT). Telomere shortening has been observed in multiple myeloma (MM), a plasma cell malignancy with a complex and heterogeneous genetic background. In the present study, we aimed to analyse telomere length and hTERT genetic variants as potential markers of risk and survival in 251 MM patients. We found that telomere length was significantly shorter in MM patients than in healthy individuals, and patients with more advanced disease (stage III according to the International Staging System) had shorter telomeres than patients with less advanced disease. MM patients with hTERT allele rs2736100 T were characterized with significantly shorter progression-free survival (PFS). Moreover, allele rs2736100 T was also found to be less common in patients with disease progression in response to treatment. hTERT rs2853690 T was associated with higher haemoglobin blood levels and lower C-reactive protein. In conclusion, our results suggest that telomere length and hTERT genetic variability may affect MM development and can be potential prognostic markers in this disease

    BSG (CD147) Serum Level and Genetic Variants Are Associated with Overall Survival in Acute Myeloid Leukaemia

    No full text
    Basigin (BSG, CD147) is a multifunctional protein involved in cancer cell survival, mostly by controlling lactate transport through its interaction with monocarboxylate transporters (MCTs) such as MCT1. Previous studies have found that single nucleotide polymorphisms (SNPs) in the gene coding for BSG and MCT1, as well as levels of the soluble form of BSG (sBSG), are potential biomarkers in various diseases. The goal of this study was to confirm BSG and MCT1 RNA overexpression in AML cell lines, as well as to analyse soluble BSG levels and selected BSG/MCT1 genetic variants as potential biomarkers in AML patients. We found that BSG and MCT1 were overexpressed in most AML cell lines. Soluble BSG was increased in AML patients compared to healthy controls, and correlated with various clinical parameters. High soluble BSG was associated with worse overall survival, higher bone marrow blast percentage, and higher white blood cell count. BSG SNPs rs4919859 and rs4682, as well as MCT1 SNP rs1049434, were also associated with overall survival of AML patients. In conclusion, this study confirms the importance of BSG/MCT1 in AML, and suggests that soluble BSG and BSG/MCT1 genetic variants may act as potential AML biomarkers

    Polymorphisms in the Genes Coding for TLRs, NLRs and RLRs Are Associated with Clinical Parameters of Patients with Acute Myeloid Leukemia

    No full text
    Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) are major elements of the innate immune system that recognize pathogen-associated molecular patterns. Single-nucleotide polymorphisms (SNPs) in the TLR, NLR, and RLR genes may lead to an imbalance in the production of pro- and anti-inflammatory cytokines, changes in susceptibility to infections, the development of diseases, and carcinogenesis. Acute myeloid leukemia (AML) is a bone marrow malignancy characterized by uncontrolled proliferation of transformed myeloid precursors. We retrospectively analyzed 90 AML patients. We investigated the effect of fifteen SNPs located in the genes coding for RLR1 (rs9695310, rs10738889, rs10813831), NOD1 (rs2075820, rs6958571), NOD2 (rs2066845, rs2066847, rs2066844), TLR3 (rs5743305, rs3775296, 3775291), TLR4 (rs4986791, rs4986790), and TLR9 (rs187084, rs5743836). We observed that TLR4 rs4986791, TLR9 rs5743836, and NOD2 rs2066847 were associated with CRP levels, while RLR-1 rs10738889 was associated with LDH level. Furthermore, we found TLR3 rs5743305 AA to be more common in patients with infections. We also found TLR9 rs187084 C to be associated with more favorable risk, and RLR-1 rs9695310 GG with higher age at diagnosis. In conclusion, the current study showed that SNPs in the genes encoding TLRs, NLRs, and RLRs may be potential biomarkers in patients with AML
    corecore