48 research outputs found
Optimization of bioelectrochemical interfaces for biosensors and biofuel cells
Ein wichtiges Ziel für die Entwicklung von Enzymelektroden ist es, einen effizienten Elektronentransfer (ET) zwischen Enzym und Elektrode zu gewährleisten. Um dies zu ermöglichen, wurden im Rahmen dieser Arbeit speziell angepasste Redoxpolymere genutzt. Das Polymer dient hierbei nicht nur als Elektronenrelay, sondern stellt auch eine Immobilisierungsmatrix dar, mit der stabile Enzym/Polymer Filme hergestellte werden können. In dieser Arbeit, wurden Redoxpolymere, die mit Os-Komplexen oder mit redoxaktiven Farbstoffmolekülen modifiziert wurden verwendet. Beide Redox-Mediatoren weisen ein niedriges Formalpotential (E) auf. Der Vorteil eines niedrigen E, besteht darin, dass die Ko-oxidation von Interferenz-Molekülen minimiert werden kann. Des Weiteren ermöglicht eine Bioanode mit niedrigem E in Kombination mit einer Biokathode, die ein hohes Formalpotential aufweist, den Aufbau von Biobrennstoffzellen mit einer hohen Leerlaufspannung
Paracetamol Sensing with a Pencil Lead Electrode Modified with Carbon Nanotubes and Polyvinylpyrrolidone
The determination of paracetamol is a common need in pharmaceutical and environmental samples for which a low-cost, rapid, and accurate sensor would be highly desirable. We develop a novel pencil graphite lead electrode (PGE) modified with single-wall carbon nanotubes (SWCNTs) and polyvinylpyrrolidone (PVP) polymer (PVP/SWCNT/PGE) for the voltammetric quantification of paracetamol. The sensor shows remarkable analytical performance in the determination of paracetamol at neutral pH, with a limit of detection of 0.38 μM and a linear response from 1 to 500 μM using square-wave voltammetry (SWV), which are well suited to the analysis of pharmaceutical preparations. The introduction of the polymer PVP can cause dramatic changes in the sensing performance of the electrode, depending on its specific architecture. These effects were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The results indicate that the co-localization and dispersion of PVP throughout the carbon nanotubes on the electrode are key to its superior electrochemical performance, facilitating the electrical contact between the nanotubes and with the electrode surface. The application of this sensor to commercial syrup and tablet preparations is demonstrated with excellent results
Novel Dihydro-1,3,2H-benzoxazine Derived from Furfurylamine: Crystal Structure, Hirshfeld Surface Analysis, Photophysical Property, and Computational Study
Dihydro-1,3,2H-benzoxazines (or benzoxazine monomers) are a class of compounds that have been widely utilized in many areas such as the production of the functional polymers and optoelectronic materials. The structure variety of the benzoxazines plays a vital role in their desired properties. The effort of synthesizing functionalized benzoxazines from bioresources is of interest for sustainable development. Herein, we report the synthesis of the novel benzoxazine monomer referred to as 3-(furan-2-ylmethyl)-6-methyl-3,4-dihydro-2H-benzo[e][1,3]oxazine or benzoxazine (I) from a one-pot Mannich reaction using p-cresol, paraformaldehyde, and furfurylamine (a bio-derived amine). An X-ray crystallographic study was performed at low temperature (100 K) to obtain the structural characteristics of the benzoxazine (I). The result reveals that the oxazine ring adopts a half chair conformation to locate all the members of the benzoxazine ring as planar as possible by employing the expansion of the bond angles within the ring. Apart from the structural parameters, the intermolecular interactions were also examined. It was found that the significant interactions within the crystal are C–H···N, C–H···O, and the C–H···π interactions. The C–H···N interactions link the benzoxazine (I) molecules into an infinite molecular chain, propagating along the [100] direction. Hirshfeld surfaces and their corresponding fingerprint plots were comprehensively analyzed to confirm and quantify the significance of these interactions. Moreover, the photophysical properties of the benzoxazine (I) were investigated in solvents with various polarities. The corresponding relations between the structural features, frontier molecular orbitals, and absorption-and-emission characteristics were proposed and explained according to the DFT and TD-DFT calculations
Development of a Sensitive Self-Powered Glucose Biosensor Based on an Enzymatic Biofuel Cell
Biofuel cells allow for constructing sensors that leverage the specificity of enzymes without the need for an external power source. In this work, we design a self-powered glucose sensor based on a biofuel cell. The redox enzymes glucose dehydrogenase (NAD-GDH), glucose oxidase (GOx), and horseradish peroxidase (HRP) were immobilized as biocatalysts on the electrodes, which were previously engineered using carbon nanostructures, including multi-wall carbon nanotubes (MWCNTs) and reduced graphene oxide (rGO). Additional polymers were also introduced to improve biocatalyst immobilization. The reported design offers three main advantages: (i) by using glucose as the substrate for the both anode and cathode, a more compact and robust design is enabled, (ii) the system operates under air-saturating conditions, with no need for gas purge, and (iii) the combination of carbon nanostructures and a multi-enzyme cascade maximizes the sensitivity of the biosensor. Our design allows the reliable detection of glucose in the range of 0.1–7.0 mM, which is perfectly suited for common biofluids and industrial food samples
Electrodeposition of Cobalt Oxides on Carbon Nanotubes for Sensitive Bromhexine Sensing
We develop an electrochemical sensor for the determination of bromhexine hydrochloride (BHC), a widely use mucolytic drug. The sensor is prepared by electrodeposition of cobalt oxides (CoOx) on a glassy carbon electrode modified with carboxylated single-walled carbon nanotubes (SWCNT). A synergistic effect between CoOx and SWCNT is observed, leading to a significant improvement in the BHC electrooxidation current. Based on cyclic voltammetry studies at varying scan rates, we conclude that the electrochemical oxidation of BHC is under mixed diffusion–adsorption control. The proposed sensor allows the amperometric determination of BHC in a linear range of 10–500 µM with a low applied voltage of 0.75 V. The designed sensor provides reproducible measurements, is not affected by common interfering substances, and shows excellent performance for the analysis of BHC in pharmaceutical preparations
Crystal Structure and Hirshfeld Surface Analysis of Bis(Triethanolamine)Nickel(II) Dinitrate Complex and a Revelation of Its Characteristics via Spectroscopic, Electrochemical and DFT Studies Towards a Promising Precursor for Metal Oxides Synthesis
Metal complexes with chelating ligands are known as promising precursors for the synthesis of targeted metal oxides via thermal decomposition pathways. Triethanolamine (TEA) is a versatile ligand possessing a variety of coordination modes to metal ions. Understanding the crystal structure is beneficial for the rational design of the metal complex precursors. Herein, a bis(triethanolamine)nickel (II) dinitrate (named as Ni-TEA) crystal was synthesized and thoroughly investigated. X-ray crystallography revealed that Ni(II) ions adopt a distorted octahedral geometry surrounded by two neutral TEA ligands via two N and four O coordinates. Hirshfeld surface analysis indicated the major contribution of the intermolecular hydrogen-bonding between —OH groups of TEA in the crystal packing. Moreover, several O–H stretching peaks in Fourier transformed infrared spectroscopy (FTIR) spectra emphasizes the various chemical environments of —OH groups due to the formation of the hydrogen-bonding framework. The Density-functional theory (DFT) calculation revealed the electronic properties of the crystal. Furthermore, the Ni-TEA complex is presumably useful for metal oxide synthesis via thermal decomposition at a moderate temperature (380 °C). Cyclic voltammetry indicated the possible oxidative reaction of the Ni-TEA complex at a lower potential than nickel(II) nitrate and TEA ligand, highlighting its promising utility for the synthesis of mixed valence oxides such as spinel structures
Influences of Chemical Functionalities on Crystal Structures and Electrochemical Properties of Dihydro-benzoxazine Dimer Derivatives
Dihydro-1,3,2H-benzoxazine dimer derivatives or dihydro-benzoxazine dimers are a class of compounds typically prepared by ring-opening reactions between dihydro-benzoxazines and phenols. Dihydro-benzoxazine dimers act as chelating agents for several transition and rare-earth cations. To better understand the chelating properties, it is necessary to examine their structural features and electrochemical characteristics thoroughly. However, the electrochemical properties of dihydro-benzoxazine dimers have not been tremendously examined. Herein, eight derivatives of dihydro-benzoxazine dimers possessing different substituents on the benzene ring and the tertiary-amine nitrogen were synthesized as model compounds to investigate their influences on crystal structures and electrochemical properties. The crystal structure of the dihydro-benzoxazine dimer, namely 2,2′-(cyclohexylazanediyl)bis(methylene)bis(4-methoxyphenol) (7), is identified for the first time and further used to compare with the crystal structures of other derivatives reported previously. For all the derivatives, intermolecular O–H⋅⋅⋅O hydrogen bonds are the significant interactions to hold the crystal packing of (7) and also the other derivatives. Hirshfeld surface analyses confirm the presence of intermolecular O–H⋅⋅⋅O hydrogen bonds. Redox behavior of the eight dihydro-benzoxazine dimers was studied by cyclic voltammetry. An oxidation peak observed at 0.25–0.47 V corresponds to the oxidation of the phenolic –OH group to the phenoxonium intermediate. The shift in the electrochemical peak positions is due to the different abilities of the substituents to stabilize the phenoxonium cation intermediate. The stabilizing power is ranged in the following order: methoxy > dimethyl > ethyl ≈ methyl, and N-cyclohexyl > N-methyl. Thus, the derivative (7), which contains both the methoxy and N-cyclohexyl groups, has the lowest oxidation potential. Our work elucidates the effect of the substituents on the crystal structures and electrochemical properties of the dihydro-benzoxazine dimers