18,244 research outputs found
Attachment, Physiological and Familial Vulnerability in Childhood Obesity: an Interactive Multisystem Approach
The aims of the present study were to test the association between insecure attachment and basal cortisol and catecholamines levels in a sample of obese children. The role of familial vulnerability and gender was also investigated.
Methods: Cortisol and catecholamines levels of 8- to 13-year olds obese children were measured. Self-report questionnaires were used to assess attachment pattern and current anxiety and depression, and parent-report questionnaires were used to assess attachment, current anxiety and depression and familial vulnerability. Linear regression analyses were performed for individuals that scored low versus high on parental internalizing problems, and for boys and girls, separately.
Results: In the group with high parental internalizing problems, insecure attachment was significantly associated with reduced basal levels of cortisol, in boys (p=0.007, b= -0.861, R2= 73.0%). In the group with low parental internalizing problems, the association between insecure attachment and cortisol was not significant in either boys or girls, and it was negative in boys (p=0.075, b= -0.606, R2= 36.7%) and positive in girls (p=0.677, b= 0.176, R2= 3.1%) .
Conclusions: Apparently, physiological risk factors for psicopathology in obesity are more evident in individuals with a high familial vulnerability. In addition, patterns of physiological risk for psicopathology in obesity are different in boys and girls. Therefore, it is important to take into account familial vulnerability and gender when investigating physiological risk factors for psycopathology in obesity. Insecure attachment in childhood may be a risk factor for obesity. Interventions to increase children's attachment security should examine the effects on children's weight
On the quantumness of correlations in nuclear magnetic resonance
Nuclear Magnetic Resonance (NMR) was successfully employed to test several
protocols and ideas in Quantum Information Science. In most of these
implementations the existence of entanglement was ruled out. This fact
introduced concerns and questions about the quantum nature of such bench tests.
In this article we address some issues related to the non-classical aspects of
NMR systems. We discuss some experiments where the quantum aspects of this
system are supported by quantum correlations of separable states. Such
quantumness, beyond the entanglement-separability paradigm, is revealed via a
departure between the quantum and the classical versions of information theory.
In this scenario, the concept of quantum discord seems to play an important
role. We also present an experimental implementation of an analogous of the
single-photon Mach-Zehnder interferometer employing two nuclear spins to encode
the interferometric paths. This experiment illustrate how non-classical
correlations of separable states may be used to simulate quantum dynamics. The
results obtained are completely equivalent to the optical scenario, where
entanglement (between two field modes) may be present
A 'p-n' diode with hole and electron-doped lanthanum manganite
The hole-doped manganite La0.7Ca0.3MnO3 and the electron-doped manganite
La0.7Ce0.3MnO3 undergo an insulator to metal transition at around 250 K, above
which both behave as a polaronic semiconductor. We have successfully fabricated
an epitaxial trilayer (La0.7Ca0.3MnO3/SrTiO3/La0.7Ce0.3MnO3), where SrTiO3 is
an insulator. At room temperature, i.e. in the semiconducting regime, it
exhibits asymmetric current-voltage (I-V) characteristics akin to a p-n diode.
The observed asymmetry in the I-V characteristics disappears at low
temperatures where both the manganite layers are metallic. To the best of our
knowledge, this is the first report of such a p-n diode, using the polaronic
semiconducting regime of doped manganites.Comment: PostScript text and 2 figures, to be published in Appl. Phys. Lett
Water activity in lamellar stacks of lipid bilayers: "Hydration forces" revisited
Water activity and its relationship with interactions stabilising lamellar
stacks of mixed lipid bilayers in their fluid state are investigated by means
of osmotic pressure measurements coupled with small-angle x-ray scattering. The
(electrically-neutral) bilayers are composed of a mixture in various
proportions of lecithin, a zwitterionic phospholipid, and Simulsol, a non-ionic
cosurfactant with an ethoxylated polar head. For highly dehydrated samples the
osmotic pressure profile always exhibits the "classical" exponential decay as
hydration increases but, depending on Simulsol to lecithin ratio, it becomes
either of the "bound" or "unbound" types for more water-swollen systems. A
simple thermodynamic model is used for interpreting the results without
resorting to the celebrated but elusive "hydration forces"Comment: 24 pages, 12 figures. Accepted for publication in The European
Physical Journal
Nonclassical correlation in NMR quadrupolar systems
The existence of quantum correlation (as revealed by quantum discord), other
than entanglement and its role in quantum-information processing (QIP), is a
current subject for discussion. In particular, it has been suggested that this
nonclassical correlation may provide computational speedup for some quantum
algorithms. In this regard, bulk nuclear magnetic resonance (NMR) has been
successfully used as a test bench for many QIP implementations, although it has
also been continuously criticized for not presenting entanglement in most of
the systems used so far. In this paper, we report a theoretical and
experimental study on the dynamics of quantum and classical correlations in an
NMR quadrupolar system. We present a method for computing the correlations from
experimental NMR deviation-density matrices and show that, given the action of
the nuclear-spin environment, the relaxation produces a monotonic time decay in
the correlations. Although the experimental realizations were performed in a
specific quadrupolar system, the main results presented here can be applied to
whichever system uses a deviation-density matrix formalism.Comment: Published versio
A high-density relativistic reflection origin for the soft and hard X-ray excess emission from Mrk 1044
We present the first results from a detailed spectral-timing analysis of a
long (130 ks) XMM-Newton observation and quasi-simultaneous NuSTAR and
Swift observations of the highly-accreting narrow-line Seyfert 1 galaxy Mrk
1044. The broadband (0.350 keV) spectrum reveals the presence of a strong
soft X-ray excess emission below 1.5 keV, iron K emission
complex at 67 keV and a `Compton hump' at 1530 keV. We find
that the relativistic reflection from a high-density accretion disc with a
broken power-law emissivity profile can simultaneously explain the soft X-ray
excess, highly ionized broad iron line and the Compton hump. At low frequencies
( Hz), the power-law continuum dominated 1.55 keV band
lags behind the reflection dominated 0.31 keV band, which is explained with
a combination of propagation fluctuation and Comptonization processes, while at
higher frequencies ( Hz), we detect a soft lag which is
interpreted as a signature of X-ray reverberation from the accretion disc. The
fractional root-mean-squared (rms) variability of the source decreases with
energy and is well described by two variable components: a less variable
relativistic disc reflection and a more variable direct coronal emission. Our
combined spectral-timing analyses suggest that the observed broadband X-ray
variability of Mrk~1044 is mainly driven by variations in the location or
geometry of the optically thin, hot corona.Comment: 23 pages, 19 figures, 4 tables, Published in MNRA
Optical study on doped polyaniline composite films
Localization driven by disorder has a strong influence on the conducting
property of conducting polymer. A class of authors hold the opinion that
disorder in the material is homogeneous and conducting polymer is disordered
metal close to Anderson-Mott Metal-Insulator transition, while others treat the
disorder as inhomogeneous and have the conclusion that conducting polymer is a
composite of ordered metallic regions and disordered insulating regions. The
morphology of conducting polymers is an important factor that have influence on
the type and extent of disorder. Different protonic acids used as dopants and
moisture have affection on polymer chain arrangement and interchain
interactions. A PANI-CSA film, two PANI-CSA/PANI-DBSA composite films with
different dopants ratio, and one of the composite films with different moisture
content are studied. Absolute reflectivity measurements are performed on the
films. Optical conductivity and the real part of dielectric function are
calculated by Kramers-Kronig(KK) relations. and
derivate from simple Drude model in low frequency range
and tendencies of the three sample are different and non-monotonic. The
Localization Modified Drude model(LMD) in the framework of Anderson-Mott theory
can not give a good fit to the experimental data. By introducing a distribution
of relaxation time into LMD, reasonable fits for all three samples are
obtained. This result supports the inhomogeneous picture.Comment: 6 figures, 7 page
- …