137 research outputs found

    Carotenoids diet: digestion, gut microbiota modulation, and inflammatory diseases

    Get PDF
    Several epidemiologic studies have found that consuming fruits and vegetables lowers the risk of getting a variety of chronic illnesses, including several types of cancers, cardiovascular diseases (CVDs), and bowel diseases. Although there is still debate over the bioactive components, various secondary plant metabolites have been linked to these positive health benefits. Many of these features have recently been connected to carotenoids and their metabolites’ effects on intracellular signalling cascades, which influence gene expression and protein translation. Carotenoids are the most prevalent lipid-soluble phytochemicals in the human diet, are found in micromolar amounts in human serum, and are very susceptible to multiple oxidation and isomerisation reactions. The gastrointestinal delivery system, digestion processes, stability, and functionality of carotenoids, as well as their impact on the gut microbiota and how carotenoids may be effective modulators of oxidative stress and inflammatory pathways, are still lacking research advances. Although several pathways involved in carotenoids’ bioactivity have been identified, future studies should focus on the carotenoids’ relationships, related metabolites, and their effects on transcription factors and metabolism.info:eu-repo/semantics/publishedVersio

    Impact of thermal treatment and hydrolysis by Alcalase and Cynara cardunculus enzymes on the functional and nutritional value of Okara

    Get PDF
    Enzymatic hydrolysis of dried okara (autoclaved and non-autoclaved) with Alcalase (AL) and Cynara cardunculus extract (CY) was studied, assessing the impact of heat treatment and hydrolysis on potential antioxidant and antihypertensive activities of final hydrolysates. This study showed that the thermal treatment (sterilization at 121 °C, 1 atm and 15 min) facilitated the enzymatic access to substrate and increased the degree of hydrolysis (DH), especially for AL (37.9%) when compared to CY (3.6%). The antioxidant activity of dried Okara (either autoclaved or not) when hydrolysed with AL was higher (4.2 mg Trolox/mL) than that observed for CY. Additionally, the potential ACE-inhibitory activity was high for samples hydrolysed with both enzymes, however the highest ACE inhibition was also found for AL (IC50 = 9.97 µg/mL). This study allowed the identification of new peptide sequences in dried okara hydrolysed with both enzymes, and some sequences that can explain their bioactivities. The results indicate that dried okara hydrolysates can either be used as functional ingredient or as food supplement for blood pressure lowering or antioxidant applications in the future.info:eu-repo/semantics/acceptedVersio

    Antioxidant activity of sugar molasses, including protective effect against DNA oxidative damage

    Get PDF
    Extracts were obtained from molasses, a byproduct of the sugar industry, via a number of chromatographic steps. Their antioxidant capacity was studied, including the inhibitory effect upon DNA oxidative damage;the phenolic compound profile there of was ascertained as well. Two extracts exhibited significant antioxidant features, expressed by their capacity to decolorize ABTS radical cation and to scavenge hydroxyl free radicals (via deoxyribose assay). Those 2 extracts also brought about protection against induced DNA oxidative damage (via decreasing DNA scission, as assessed by electrophoresis).The phenolic compounds syringic acid,p-hydroxybenzoic acid, vanillic acid, p-hydroxybenzaldehyde, and ferulic acid were positively identified and quantified

    Processed by‐products from soy beverage (Okara) as sustainable ingredients for nile tilapia (o. niloticus) juveniles: effects on nutrient utilization and muscle quality

    Get PDF
    The apparent digestibility coefficients (ADCs) of differently processed okara meals were assessed in Nile tilapia diets: dried okara not autoclaved (FOK), dried okara autoclaved (AOK), okara hydrolyzed with Alcalase (ALOK) or Cynara cardunculus proteases (CYOK), and hydrolyzed okara fermented with lactic bacteria: Lactobacillus rhamnosus R11 (CYR11OK) or Bifidobacterium animalis ssp. lactis Bb12 (CYB12OK). Okara processing significantly affected nutrient digestibility: dry matter ADC was highest in CYR11OK (80%) and lowest in FOK (40%). The lowest protein digestibility was observed in CYR11OK (72%), and the highest in AOK (97%) and CYOK (91%), evidencing the effectiveness of the autoclave and the use of C. Cardunculus proteases to increase okara protein bioavailability. The inclusion of up to 20% of AOK or CYOK did not affect fish growth, nutrient utilization, or whole body composition of Nile tilapia. The flesh quality (color, pH, water activity, cohesiveness, elasticity and resilience) was not affected by the dietary incorporation of AOK or CYOK. Fish fed with AOK diets stand out for their high density of muscle fibers, particularly in AOK20, which can explain their high muscle firmness and may result in further hypertrophic growth. Altogether, results suggest that hydrolyzed or autoclaved okara are valuable ingredients for Nile tilapia diets.info:eu-repo/semantics/publishedVersio
    corecore