68 research outputs found

    Force generation examined by laser temperature-jumps in shortening and lengthening mammalian (rabbit psoas) muscle fibres

    Get PDF
    We examined the tension change induced by a rapid temperature jump (T-jump) in shortening and lengthening active muscle fibres. Experiments were done on segments of permeabilized single fibres (length (L0) ∼2 mm, sarcomere length 2.5 μm) from rabbit psoas muscle; [MgATP] was 4.6 mm, pH 7.1, ionic strength 200 mm and temperature ∼9°C. A fibre was maximally Ca2+-activated in the isometric state and a ∼3°C, rapid (< 0.2 ms), laser T-jump applied when the tension was approximately steady in the isometric state, or during ramp shortening or ramp lengthening at a limited range of velocities (0–0.2 L0 s−1). The tension increased to 2- to 3 × P0 (isometric force) during ramp lengthening at velocities > 0.05 L0 s−1, whereas the tension decreased to about < 0.5 × P0 during shortening at 0.1–0.2 L0 s−1; the unloaded shortening velocity was ∼1 L0 s−1 and the curvature of the force–shortening velocity relation was high (a/P0 ratio from Hill's equation of ∼0.05). In isometric state, a T-jump induced a tension rise of 15–20% to a new steady state; by curve fitting, the tension rise could be resolved into a fast (phase 2b, 40–50 s−1) and a slow (phase 3, 5–10 s−1) exponential component (as previously reported). During steady lengthening, a T-jump induced a small instantaneous drop in tension, followed by recovery, so that the final tension recorded with and without a T-jump was not significantly different; thus, a T-jump did not lead to a net increase of tension. During steady shortening, the T-jump induced a pronounced tension rise and both its amplitude and the rate (from a single exponential fit) increased with shortening velocity; at 0.1–0.2 L0 s−1, the extent of fibre shortening during the T-jump tension rise was estimated to be ∼1.2% L0 and it was shorter at lower velocities. At a given shortening velocity and over the temperature range of 8–30°C, the rate of T-jump tension rise increased with warming (Q10 ≈ 2.7), similar to phase 2b (endothermic force generation) in isometric muscle. Results are discussed in relation to the previous findings in isometric muscle fibres which showed that a T-jump promotes an early step in the crossbridge–ATPase cycle that generates force. In general, the finding that the T-jump effect on active muscle tension is pronounced during shortening, but is depressed/inhibited during lengthening, is consistent with the expectations from the Fenn effect that energy liberation (and acto-myosin ATPase rate) in muscle are increased during shortening and depressed/inhibited during lengthening

    Age- and Gender-Related Changes in Contractile Properties of Non-Atrophied EDL Muscle

    Get PDF
    Background: In humans, ageing causes skeletal muscles to become atrophied, weak, and easily fatigued. In rodent studies, ageing has been associated with significant muscle atrophy and changes in the contractile properties of the muscles. However, it is not entirely clear whether these changes in contractile properties can occur before there is significant atrophy, and whether males and females are affected differently. Methods and Results: We investigated various contractile properties of whole isolated fast-twitch EDL muscles from adult (2–6 months-old) and aged (12–22 months-old) male and female mice. Atrophy was not present in the aged mice. Compared with adult mice, EDL muscles of aged mice had significantly lower specific force, longer tetanus relaxation times, and lower fatiguability. In the properties of absolute force and muscle relaxation times, females were affected by ageing to a greater extent than males. Additionally, EDL muscles from a separate group of male mice were subjected to eccentric contractions of 15 % strain, and larger force deficits were found in aged than in adult mice. Conclusion: Our findings provide further insight into the muscle atrophy, weakness and fatiguability experienced by the elderly. We have shown that even in the absence of muscle atrophy, there are definite alterations in the physiological properties of whole fast-twitch muscle from ageing mice, and for some of these properties the alterations are mor

    A Mathematical Model of Muscle Containing Heterogeneous Half-Sarcomeres Exhibits Residual Force Enhancement

    Get PDF
    A skeletal muscle fiber that is stimulated to contract and then stretched from L1 to L2 produces more force after the initial transient decays than if it is stimulated at L2. This behavior has been well studied experimentally, and is known as residual force enhancement. The underlying mechanism remains controversial. We hypothesized that residual force enhancement could reflect mechanical interactions between heterogeneous half-sarcomeres. To test this hypothesis, we subjected a computational model of interacting heterogeneous half-sarcomeres to the same activation and stretch protocols that produce residual force enhancement in real preparations. Following a transient period of elevated force associated with active stretching, the model predicted a slowly decaying force enhancement lasting >30 seconds after stretch. Enhancement was on the order of 13% above isometric tension at the post-stretch muscle length, which agrees well with experimental measurements. Force enhancement in the model was proportional to stretch magnitude but did not depend strongly on the velocity of stretch, also in agreement with experiments. Even small variability in the strength of half-sarcomeres (2.1% standard deviation, normally distributed) was sufficient to produce a 5% force enhancement over isometric tension. Analysis of the model suggests that heterogeneity in half-sarcomeres leads to residual force enhancement by storing strain energy introduced during active stretch in distributions of bound cross-bridges. Complex interactions between the heterogeneous half-sarcomeres then dissipate this stored energy at a rate much slower than isolated cross-bridges would cycle. Given the variations in half-sarcomere length that have been observed in real muscle preparations and the stochastic variability inherent in all biological systems, half-sarcomere heterogeneity cannot be excluded as a contributing source of residual force enhancement

    The Viscoelastic Properties of Passive Eye Muscle in Primates. I: Static Forces and Step Responses

    Get PDF
    The viscoelastic properties of passive eye muscles are prime determinants of the deficits observed following eye muscle paralysis, the root cause of several types of strabismus. Our limited knowledge about such properties is hindering the ability of eye plant models to assist in formulating a patient's diagnosis and prognosis. To investigate these properties we conducted an extensive in vivo study of the mechanics of passive eye muscles in deeply anesthetized and paralyzed monkeys. We describe here the static length-tension relationship and the transient forces elicited by small step-like elongations. We found that the static force increases nonlinearly with length, as previously shown. As expected, an elongation step induces a fast rise in force, followed by a prolonged decay. The time course of the decay is however considerably more complex than previously thought, indicating the presence of several relaxation processes, with time constants ranging from 1 ms to at least 40 s. The mechanical properties of passive eye muscles are thus similar to those of many other biological passive tissues. Eye plant models, which for lack of data had to rely on (erroneous) assumptions, will have to be updated to incorporate these properties

    Residual force enhancement after lengthening is present during submaximal plantar flexion and dorsiflexion actions in humans

    No full text
    Stretch of an activated muscle causes a transient increase in force during the stretch and a sustained, residual force enhancement ( RFE) after the stretch. The purpose of this study was to determine whether RFE is present in human muscles under physiologically relevant conditions ( i. e., when stretches were applied within the working range of large postural leg muscles and under submaximal voluntary activation). Submaximal voluntary plantar flexion ( PFv) and dorsiflexion ( DFv) activation was maintained by providing direct visual feedback of the EMG from soleus or tibialis anterior, respectively. RFE was also examined during electrical stimulation of the plantar flexion muscles ( PFs). Constant- velocity stretches ( 15 / s) were applied through a range of motion of 15 using a custom- built ankle torque motor. The muscles remained active throughout the stretch and for at least 10 s after the stretch. In all three activation conditions, the stable joint torque measured 9 - 10 s after the stretch was greater than the isometric joint torque at the final joint angle. When expressed as a percentage of the isometric torque, RFE values were 7, 13, and 12% for PFv, PFs, DFv, respectively. These findings indicate that RFE is a characteristic of human skeletal muscle and can be observed during submaximal ( 25%) voluntary activation when stretches are applied on the ascending limb of the force- length curve. Although the underlying mechanisms are unclear, it appears that sarcomere popping and passive force enhancement are insufficient to explain the presence of RFE in these experiments

    Optimisation of antisense oligonucleotide cocktails using in silico and in vitro techniques for targeted exon skipping in the dystrophin central rod domain

    No full text
    Becker muscular dystrophy (BMD), an allelic disorder to the severe condition Duchenne muscular dystrophy (DMD) presents with variable severity and age of onset. BMD is caused by mutations in the dystrophin gene that maintain the reading frame, resulting in a shorter, but still partially functional protein. BMD mutations are commonly found in the central rod domain, which consists of 25 triple-helical repeats similar to spectrin, with recent reports suggesting these repeats are not equivalent. One spectrin repeat is encoded by approximately 2 exons, hence excluding a single exon will leave an imperfect spectrin repeat. Antisense oligomer (AO) cocktails are currently being optimized for targeted removal of exons 23+24 in the mdx mouse, an animal model of DMD with a nonsense mutation in exon 23, to compare the effect on phenotype of taking out a half or a whole spectrin repeat. In silico analysis of oligomer cocktails is consistent with our hypothesis that the annealing of one compound to the pre-mRNA facilitates binding of the second oligomer. Individually, components of some cocktails induce no or only low levels of exon skipping. Hence it appears binding of one oligomer to a region not involved in spliceosome formation may permit another oligomer to anneal and mask crucial splice-control motifs not otherwise accessible. Optimized AO cocktails are being used in mice to induce multiple dystrophin isoforms for detailed molecular histological and physiological studies. Functional muscle testing in 12-week-old mice indicates that mdx muscles are weaker and more susceptible to stretch-induced damage when compared to normal mice, especially the diaphragm, which is most reflective of the human DMD phenotype
    corecore