519 research outputs found

    Nonlinearity Management in Higher Dimensions

    Full text link
    In the present short communication, we revisit nonlinearity management of the time-periodic nonlinear Schrodinger equation and the related averaging procedure. We prove that the averaged nonlinear Schrodinger equation does not support the blow-up of solutions in higher dimensions, independently of the strength in the nonlinearity coefficient variance. This conclusion agrees with earlier works in the case of strong nonlinearity management but contradicts those in the case of weak nonlinearity management. The apparent discrepancy is explained by the divergence of the averaging procedure in the limit of weak nonlinearity management.Comment: 9 pages, 1 figure

    Solutions to Maxwell's Equations using Spheroidal Coordinates

    Full text link
    Analytical solutions to the wave equation in spheroidal coordinates in the short wavelength limit are considered. The asymptotic solutions for the radial function are significantly simplified, allowing scalar spheroidal wave functions to be defined in a form which is directly reminiscent of the Laguerre-Gaussian solutions to the paraxial wave equation in optics. Expressions for the Cartesian derivatives of the scalar spheroidal wave functions are derived, leading to a new set of vector solutions to Maxwell's equations. The results are an ideal starting point for calculations of corrections to the paraxial approximation

    Solvable two-dimensional time-dependent non-Hermitian quantum systems with infinite dimensional Hilbert space in the broken PT-regime

    Get PDF
    We provide exact analytical solutions for a two-dimensional explicitly time-dependent non-Hermitian quantum system. While the time-independent variant of the model studied is in the broken PT-symmetric phase for the entire range of the model parameters, and has therefore a partially complex energy eigenspectrum, its time-dependent version has real energy expectation values at all times. In our solution procedure we compare the two equivalent approaches of directly solving the time-dependent Dyson equation with one employing the Lewis–Riesenfeld method of invariants. We conclude that the latter approach simplifies the solution procedure due to the fact that the invariants of the non-Hermitian and Hermitian system are related to each other in a pseudo-Hermitian fashion, which in turn does not hold for their corresponding time-dependent Hamiltonians. Thus constructing invariants and subsequently using the pseudo-Hermiticity relation between them allows to compute the Dyson map and to solve the Dyson equation indirectly. In this way one can bypass to solve nonlinear differential equations, such as the dissipative Ermakov–Pinney equation emerging in our and many other systems

    Lie systems and integrability conditions for t-dependent frequency harmonic oscillators

    Full text link
    Time-dependent frequency harmonic oscillators (TDFHO's) are studied through the theory of Lie systems. We show that they are related to a certain kind of equations in the Lie group SL(2,R). Some integrability conditions appear as conditions to be able to transform such equations into simpler ones in a very specific way. As a particular application of our results we find t-dependent constants of the motion for certain one-dimensional TDFHO's. Our approach provides an unifying framework which allows us to apply our developments to all Lie systems associated with equations in SL(2,R) and to generalise our methods to study any Lie system

    Ermakov-Lewis angles for one-parameter supersymmetric families of Newtonian free damping modes

    Get PDF
    We apply the Ermakov-Lewis procedure to the one-parameter damped modes \tilde{y} recently introduced by Rosu and Reyes, which are related to the common Newtonian free damping modes y by the general Riccati solution [H.C. Rosu and M. Reyes, Phys. Rev. E 57, 4850 (1998), physics/9707019]. In particular, we calculate and plot the angle quantities of this approach that can help to distinguish these modes from the common y modesComment: 6 pages, twocolumn, 18 figs embedded, only first 9 publishe

    Generalizing the autonomous Kepler Ermakov system in a Riemannian space

    Full text link
    We generalize the two dimensional autonomous Hamiltonian Kepler Ermakov dynamical system to three dimensions using the sl(2,R) invariance of Noether symmetries and determine all three dimensional autonomous Hamiltonian Kepler Ermakov dynamical systems which are Liouville integrable via Noether symmetries. Subsequently we generalize the autonomous Kepler Ermakov system in a Riemannian space which admits a gradient homothetic vector by the requirements (a) that it admits a first integral (the Riemannian Ermakov invariant) and (b) it has sl(2,R) invariance. We consider both the non-Hamiltonian and the Hamiltonian systems. In each case we compute the Riemannian Ermakov invariant and the equations defining the dynamical system. We apply the results in General Relativity and determine the autonomous Hamiltonian Riemannian Kepler Ermakov system in the spatially flat Friedman Robertson Walker spacetime. We consider a locally rotational symmetric (LRS) spacetime of class A and discuss two cosmological models. The first cosmological model consists of a scalar field with exponential potential and a perfect fluid with a stiff equation of state. The second cosmological model is the f(R) modified gravity model of {\Lambda}_{bc}CDM. It is shown that in both applications the gravitational field equations reduce to those of the generalized autonomous Riemannian Kepler Ermakov dynamical system which is Liouville integrable via Noether integrals.Comment: Reference [25] update, 21 page

    Unified Treatment of Heterodyne Detection: the Shapiro-Wagner and Caves Frameworks

    Full text link
    A comparative study is performed on two heterodyne systems of photon detectors expressed in terms of a signal annihilation operator and an image band creation operator called Shapiro-Wagner and Caves' frame, respectively. This approach is based on the introduction of a convenient operator ψ^\hat \psi which allows a unified formulation of both cases. For the Shapiro-Wagner scheme, where [ψ^,ψ^†]=0[\hat \psi, \hat \psi^{\dag}] =0, quantum phase and amplitude are exactly defined in the context of relative number state (RNS) representation, while a procedure is devised to handle suitably and in a consistent way Caves' framework, characterized by [ψ^,ψ^†]≠0[\hat \psi, \hat \psi^{\dag}] \neq 0, within the approximate simultaneous measurements of noncommuting variables. In such a case RNS phase and amplitude make sense only approximately.Comment: 25 pages. Just very minor editorial cosmetic change

    On Close Relationship between Classical Time-Dependent Harmonic Oscillator and Non-Relativistic Quantum Mechanics in One Dimension

    Full text link
    In this paper, I present a mapping between representation of some quantum phenomena in one dimension and behavior of a classical time-dependent harmonic oscillator. For the first time, it is demonstrated that quantum tunneling can be described in terms of classical physics without invoking violations of the energy conservation law at any time instance. A formula is presented that generates a wide class of potential barrier shapes with the desirable reflection (transmission) coefficient and transmission phase shift along with the corresponding exact solutions of the time-independent Schr\"odinger's equation. These results, with support from numerical simulations, strongly suggest that two uncoupled classical harmonic oscillators, which initially have a 90\degree relative phase shift and then are simultaneously disturbed by the same parametric perturbation of a finite duration, manifest behavior which can be mapped to that of a single quantum particle, with classical 'range relations' analogous to the uncertainty relations of quantum physics.Comment: 20 pages, 8 figures, 1 table, final versio

    Superposition rules for higher-order systems and their applications

    Full text link
    Superposition rules form a class of functions that describe general solutions of systems of first-order ordinary differential equations in terms of generic families of particular solutions and certain constants. In this work we extend this notion and other related ones to systems of higher-order differential equations and analyse their properties. Several results concerning the existence of various types of superposition rules for higher-order systems are proved and illustrated with examples extracted from the physics and mathematics literature. In particular, two new superposition rules for second- and third-order Kummer--Schwarz equations are derived.Comment: (v2) 33 pages, some typos corrected, added some references and minor commentarie

    Anomalies of ac driven solitary waves with internal modes: Nonparametric resonances induced by parametric forces

    Get PDF
    We study the dynamics of kinks in the Ï•4\phi^4 model subjected to a parametric ac force, both with and without damping, as a paradigm of solitary waves with internal modes. By using a collective coordinate approach, we find that the parametric force has a non-parametric effect on the kink motion. Specifically, we find that the internal mode leads to a resonance for frequencies of the parametric driving close to its own frequency, in which case the energy of the system grows as well as the width of the kink. These predictions of the collective coordinate theory are verified by numerical simulations of the full partial differential equation. We finally compare this kind of resonance with that obtained for non-parametric ac forces and conclude that the effect of ac drivings on solitary waves with internal modes is exactly the opposite of their character in the partial differential equation.Comment: To appear in Phys Rev
    • …
    corecore