1,635 research outputs found
Environmental and genetic influences on neurocognitive development: the importance of multiple methodologies and time-dependent intervention
Genetic mutations and environmental factors dynamically influence gene expression and developmental trajectories at the neural, cognitive, and behavioral levels. The examples in this article cover different periods of neurocognitive development—early childhood, adolescence, and adulthood—and focus on studies in which researchers have used a variety of methodologies to illustrate the early effects of socioeconomic status and stress on brain function, as well as how allelic differences explain why some individuals respond to intervention and others do not. These studies highlight how similar behaviors can be driven by different underlying neural processes and show how a neurocomputational model of early development can account for neurodevelopmental syndromes, such as autism spectrum disorders, with novel implications for intervention. Finally, these studies illustrate the importance of the timing of environmental and genetic factors on development, consistent with our view that phenotypes are emergent, not predetermined
Kinematic biomechanical assessment of human articular cartilage transplants in the knee using 3-T MRI: an in vivo reproducibility study
The aims of this study were to examine the clinical feasibility and reproducibility of kinematic MR imaging with respect to changes in T (2) in the femoral condyle articular cartilage. We used a flexible knee coil, which allows acquisition of data in different positions from 40 degrees flexion to full extension during MR examinations. The reproducibility of T (2) measurements was evaluated for inter-rater and inter-individual variability and determined as a coefficient of variation (CV) for each volunteer and rater. Three different volunteers were measured twice and regions of interest (ROIs) were selected by three raters at different time points. To prove the clinical feasibility of this method, 20 subjects (10 patients and 10 age- and sex-matched volunteers) were enrolled in the study. Inter-rater variability ranged from 2 to 9 and from 2 to 10% in the deep and superficial zones, respectively. Mean inter-individual variability was 7% for both zones. Different T (2) values were observed in the superficial cartilage zone of patients compared with volunteers. Since repair tissue showed a different behavior in the contact zone compared with healthy cartilage, a possible marker for improved evaluation of repair tissue quality after matrix-associated autologous chondrocyte transplantation (MACT) may be available and may allow biomechanical assessment of cartilage transplants
GCIP water and energy budget synthesis (WEBS)
As part of the World Climate Research Program\u27s (WCRPs) Global Energy and Water-Cycle Experiment (GEWEX) Continental-scale International Project (GCIP), a preliminary water and energy budget synthesis (WEBS) was developed for the period 1996–1999 from the “best available” observations and models. Besides this summary paper, a companion CD-ROM with more extensive discussion, figures, tables, and raw data is available to the interested researcher from the GEWEX project office, the GAPP project office, or the first author. An updated online version of the CD-ROM is also available at http://ecpc.ucsd.edu/gcip/webs.htm/. Observations cannot adequately characterize or “close” budgets since too many fundamental processes are missing. Models that properly represent the many complicated atmospheric and near-surface interactions are also required. This preliminary synthesis therefore included a representative global general circulation model, regional climate model, and a macroscale hydrologic model as well as a global reanalysis and a regional analysis. By the qualitative agreement among the models and available observations, it did appear that we now qualitatively understand water and energy budgets of the Mississippi River Basin. However, there is still much quantitative uncertainty. In that regard, there did appear to be a clear advantage to using a regional analysis over a global analysis or a regional simulation over a global simulation to describe the Mississippi River Basin water and energy budgets. There also appeared to be some advantage to using a macroscale hydrologic model for at least the surface water budgets
The evolution of representation in simple cognitive networks
Representations are internal models of the environment that can provide
guidance to a behaving agent, even in the absence of sensory information. It is
not clear how representations are developed and whether or not they are
necessary or even essential for intelligent behavior. We argue here that the
ability to represent relevant features of the environment is the expected
consequence of an adaptive process, give a formal definition of representation
based on information theory, and quantify it with a measure R. To measure how R
changes over time, we evolve two types of networks---an artificial neural
network and a network of hidden Markov gates---to solve a categorization task
using a genetic algorithm. We find that the capacity to represent increases
during evolutionary adaptation, and that agents form representations of their
environment during their lifetime. This ability allows the agents to act on
sensorial inputs in the context of their acquired representations and enables
complex and context-dependent behavior. We examine which concepts (features of
the environment) our networks are representing, how the representations are
logically encoded in the networks, and how they form as an agent behaves to
solve a task. We conclude that R should be able to quantify the representations
within any cognitive system, and should be predictive of an agent's long-term
adaptive success.Comment: 36 pages, 10 figures, one Tabl
The Emerging Scholarly Brain
It is now a commonplace observation that human society is becoming a coherent
super-organism, and that the information infrastructure forms its emerging
brain. Perhaps, as the underlying technologies are likely to become billions of
times more powerful than those we have today, we could say that we are now
building the lizard brain for the future organism.Comment: to appear in Future Professional Communication in Astronomy-II
(FPCA-II) editors A. Heck and A. Accomazz
- …