215 research outputs found
Quaternionic holomorphic geometry: Pluecker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori
The paper develops the fundamentals of quaternionic holomorphic curve theory.
The holomorphic functions in this theory are conformal maps from a Riemann
surface into the 4-sphere, i.e., the quaternionic projective line. Basic
results such as the Riemann-Roch Theorem for quaternionic holomorphic vector
bundles, the Kodaira embedding and the Pluecker relations for linear systems
are proven. Interpretations of these results in terms of the differential
geometry of surfaces in 3- and 4-space are hinted at throughout the paper.
Applications to estimates of the Willmore functional on constant mean curvature
tori, respectively energy estimates of harmonic 2-tori, and to Dirac eigenvalue
estimates on Riemannian spin bundles in dimension 2 are given.Comment: 70 pages, 1 figur
Constrained Willmore Surfaces
Constrained Willmore surfaces are conformal immersions of Riemann surfaces
that are critical points of the Willmore energy under compactly
supported infinitesimal conformal variations. Examples include all constant
mean curvature surfaces in space forms. In this paper we investigate more
generally the critical points of arbitrary geometric functionals on the space
of immersions under the constraint that the admissible variations
infinitesimally preserve the conformal structure. Besides constrained Willmore
surfaces we discuss in some detail examples of constrained minimal and volume
critical surfaces, the critical points of the area and enclosed volume
functional under the conformal constraint.Comment: 17 pages, 8 figures; v2: Hopf tori added as an example, minor changes
in presentation, numbering changed; v3: new abstract and appendix, several
changes in presentatio
Bonnet pairs and isothermic surfaces
In this note we classify all Bonnet pairs on a simply connected domain. Our main intent was to apply what we call a quaternionic function theory to a concrete problem in differential geometry. The ideas are simple: conformal immersions into quaternions or imaginary quaternions take the place of chart maps for a Riemann surface. Starting from a reference immersion we construct all conformal immersions of a given (simply connected) Riemann surface (up to translational periods) by spin transformations. With this viewpoint in mind we discuss how to construct all Bonnet pairs on a simply connected domain from isothermic surfaces and vice versa. Isothermic surfaces are solutions to a certain soliton equation and thus a simple dimension count tells us that we obtain Bonnet pairs which are not part of any of the classical Bonnet families. The corresponcence between Bonnet pairs and isothermic surfaces is explicit and to each isothermic surface we obtain a 4-parameter family of Bonnet pairs
Isothermic submanifolds of symmetric -spaces
We extend the classical theory of isothermic surfaces in conformal 3-space,
due to Bour, Christoffel, Darboux, Bianchi and others, to the more general
context of submanifolds of symmetric -spaces with essentially no loss of
integrable structure.Comment: 35 pages, 3 figures. v2: typos and other infelicities corrected
Conformal Geometry of Surfaces in S4 and Quaternions
The conformal geometry of surfaces recently developed by the authors leads to a unified understanding of algebraic curve theory and the geometry of surfaces on the basis of a quaternionic-valued function theory. The book offers an elementary introduction to the subject but takes the reader to rather advanced topics. Willmore surfaces in the foursphere, their BĂ€cklund and Darboux transforms are covered, and a new proof of the classification of Willmore spheres is given
Cyclic and ruled Lagrangian surfaces in complex Euclidean space
We study those Lagrangian surfaces in complex Euclidean space which are
foliated by circles or by straight lines. The former, which we call cyclic,
come in three types, each one being described by means of, respectively, a
planar curve, a Legendrian curve of the 3-sphere or a Legendrian curve of the
anti de Sitter 3-space. We also describe ruled Lagrangian surfaces. Finally we
characterize those cyclic and ruled Lagrangian surfaces which are solutions to
the self-similar equation of the Mean Curvature Flow. Finally, we give a
partial result in the case of Hamiltonian stationary cyclic surfaces
- âŠ