28 research outputs found

    The transcriptional profile of coronary arteritis in Kawasaki disease.

    Get PDF
    BACKGROUND: Kawasaki Disease (KD) can cause potentially life-threatening coronary arteritis in young children, and has a likely infectious etiology. Transcriptome profiling is a powerful approach to investigate gene expression in diseased tissues. RNA sequencing of KD coronary arteries could elucidate the etiology and the host response, with the potential to improve KD diagnosis and/or treatment. METHODS: Deep RNA sequencing was performed on KD (n = 8) and childhood control (n = 7) coronary artery tissues, revealing 1074 differentially expressed mRNAs. Non-human RNA sequences were subjected to a microbial discovery bioinformatics platform, and microbial sequences were analyzed by Metastats for association with KD. RESULTS: T lymphocyte activation, antigen presentation, immunoglobulin production, and type I interferon response were significantly upregulated in KD arteritis, while the tumor necrosis factor α pathway was not differentially expressed. Transcripts from known infectious agents were not specifically associated with KD coronary arteritis. CONCLUSIONS: The immune transcriptional profile in KD coronary artery tissues has features of an antiviral immune response such as activated cytotoxic T lymphocyte and type I interferon-induced gene upregulation. These results provide new insights into the pathogenesis of KD arteritis that can guide selection of new immunomodulatory therapies for high-risk KD patients, and provide direction for future etiologic studies

    The role of mutation rate variation and genetic diversity in the architecture of human disease

    Get PDF
    Background We have investigated the role that the mutation rate and the structure of genetic variation at a locus play in determining whether a gene is involved in disease. We predict that the mutation rate and its genetic diversity should be higher in genes associated with disease, unless all genes that could cause disease have already been identified. Results Consistent with our predictions we find that genes associated with Mendelian and complex disease are substantially longer than non-disease genes. However, we find that both Mendelian and complex disease genes are found in regions of the genome with relatively low mutation rates, as inferred from intron divergence between humans and chimpanzees, and they are predicted to have similar rates of non-synonymous mutation as other genes. Finally, we find that disease genes are in regions of significantly elevated genetic diversity, even when variation in the rate of mutation is controlled for. The effect is small nevertheless. Conclusions Our results suggest that gene length contributes to whether a gene is associated with disease. However, the mutation rate and the genetic architecture of the locus appear to play only a minor role in determining whether a gene is associated with disease

    The transcriptional profile of coronary arteritis in Kawasaki disease

    Get PDF
    BackgroundKawasaki Disease (KD) can cause potentially life-threatening coronary arteritis in young children, and has a likely infectious etiology. Transcriptome profiling is a powerful approach to investigate gene expression in diseased tissues. RNA sequencing of KD coronary arteries could elucidate the etiology and the host response, with the potential to improve KD diagnosis and/or treatment.MethodsDeep RNA sequencing was performed on KD (n = 8) and childhood control (n = 7) coronary artery tissues, revealing 1074 differentially expressed mRNAs. Non-human RNA sequences were subjected to a microbial discovery bioinformatics platform, and microbial sequences were analyzed by Metastats for association with KD.ResultsT lymphocyte activation, antigen presentation, immunoglobulin production, and type I interferon response were significantly upregulated in KD arteritis, while the tumor necrosis factor α pathway was not differentially expressed. Transcripts from known infectious agents were not specifically associated with KD coronary arteritis.ConclusionsThe immune transcriptional profile in KD coronary artery tissues has features of an antiviral immune response such as activated cytotoxic T lymphocyte and type I interferon-induced gene upregulation. These results provide new insights into the pathogenesis of KD arteritis that can guide selection of new immunomodulatory therapies for high-risk KD patients, and provide direction for future etiologic studies

    Drug Discovery for Schistosomiasis: Hit and Lead Compounds Identified in a Library of Known Drugs by Medium-Throughput Phenotypic Screening

    Get PDF
    The flatworm disease schistosomiasis infects over 200 million people with just one drug (praziquantel) available—a concern should drug resistance develop. Present drug discovery approaches for schistosomiasis are slow and not conducive to automation in a high-throughput format. Therefore, we designed a three-component screen workflow that positions the larval (schistosomulum) stage of S. mansoni at its apex followed by screens of adults in culture and, finally, efficacy tests in infected mice. Schistosomula are small enough and available in sufficient numbers to interface with automated liquid handling systems and prosecute thousands of compounds in short time frames. We inaugurated the workflow with a 2,160 compound library that includes known drugs in order to cost effectively ‘re-position’ drugs as new therapies for schistosomiasis and/or identify compounds that could be modified to that end. We identify a variety of ‘hit’ compounds (antibiotics, psychoactives, antiparasitics, etc.) that produce behavioral responses (phenotypes) in schistosomula and adults. Tests in infected mice of the most promising hits identified a number of ‘leads,’ one of which compares reasonably well with praziquantel in killing worms, decreasing egg production by the parasite, and ameliorating disease pathology. Efforts continue to more fully automate the workflow. All screen data are posted online as a drug discovery resource

    A sensory sociology of the future: Affect, hope and inventive methodologies

    Get PDF
    The starting point for this article is that the future is difficult to research because of its intangibility. Drawing on recent work in visual and sensory sociology, affect, and time and futurity, I propose that sensory methodologies provide some ways of grasping, understanding, attuning and relating to the future. To develop this argument, I pay close attention to the Children of Unquiet (2013-14) project by artist Mikhail Karikis, and especially the film of the same name. This project involved Karikis working with local children to probe the possible futures of a site that was invested with hope and progress in the twentieth century, but has since been depopulated. In turning to an art project to consider the developments of a sensory sociology of the future, my intention is to examine the resonances between the project and some of the concerns of a sensory sociology of the future. In particular, I discuss the participation of children, and a conceptualization of hope as potentiality, open, affective and in the present. In conclusion, I explicate how the article seeks to contribute to a sensory sociology of the future, not by providing a blueprint for further work but rather by offering some indicative points and coordinates for this emerging field of research, including its involvement in creating conditions through which possible futures might be provoked or invented

    Modeling the Solid-Liquid Phase Transition in Saturated Triglycerides

    No full text
    We investigated theoretically two competing published scenarios for the melting transition of the triglyceride trilaurin (TL): those of (1) Corkery et al. [Langmuir 23, 7241 (2007)] , in which the average state of each TL molecule in the liquid phase is a discotic “Y” conformer whose three chains are dynamically twisted, with an average angle of ~ 120° between them, and those of (2) Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)] , in which the liquid-state conformation of the TL molecule in the liquid phase is a nematic h‡-conformer whose three chains are in a modified “chair” conformation. We developed two competing models for the two scenarios, in which TL molecules are in a nematic compact-chair (or “h”) conformation, with extended, possibly all-trans, chains at low-temperatures, and in either a Y conformation or an h‡ conformation in the liquid state at temperatures higher than the phase-transition temperature, T‡ = 319 K. We defined an h-Y model as a realization of the proposal of Corkery et al. [Langmuir 23, 7241 (2007)] , and explored its predictions by mapping it onto an Ising model in a temperature-dependent field, performing a mean-field approximation, and calculating the transition enthalpy ΔH. We found that the most plausible realization of the h-Y model, as applied to the solid-liquid phase transition in TL, and likely to all saturated triglycerides, gave a value of ΔH in reasonable agreement with the experiment. We then defined an alternative h-h‡ model as a realization of the proposal of Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)] , in which the liquid phase exhibits an average symmetry breaking similar to an h conformation, but with twisted chains, to see whether it could describe the TL phase transition. The h-h‡ model gave a value of ΔH that was too small by a factor of ∼ 3–4. We also predicted the temperature dependence of the 1132 cm−1 Raman band for both models, and performed measurements of the ratios of three TL Raman bands in the temperature range of −20 °C ≤ T ≤ 90 °C. The experimental results were in accord with the predictions of the h-Y model and support the proposal of Corkery et al. [Langmuir 23, 7241 (2007)] that the liquid state is made up of molecules that are each, on average, in a Y conformation. Finally, we carried out computer simulations of minimal-model TLs in the liquid phase, and concluded that although the individual TL molecules are, on average, Y conformers, long-range discotic order is unlikely to exist

    Focal points: framing material culture and visual data

    No full text
    This article reflects upon the collection and presentation of photographic data. The problem of representing the visual as more than illustrative of written research findings is the methodological focus. An empirical study in Cardiff explored practices of cultural display in the home, focusing on the living room mantelpiece. First, I discuss the methodological debate concerning the `crisis of representation' of visual data in social research. Following a brief discussion of a year-long autophotographic project by informants, the debate centres on photographs taken at the time of the interview. I show how the `crisis of representation' in social enquiry can be illuminated by recognizing both domestic display and presentation of data as cultural practices/methods of researching and remembering. Finally, I argue that multi-modal representations of these mediated frames of experience can illuminate complexities of `doing' home cultures and enquiry into the domestic interior
    corecore