18 research outputs found

    Candida dubliniensis candidemia in patients with chemotherapy-induced neutropenia and bone marrow transplantation.

    Get PDF
    The recently described species Candida dubliniensis has been recovered primarily from superficial oral candidiasis in HIV-infected patients. No clinically documented invasive infections were reported until now in this patient group or in other immunocompromised patients. We report three cases of candidemia due to this newly emerging Candida species in HIV-negative patients with chemotherapy-induced immunosuppression and bone marrow transplantation

    Phage Displayed Short Peptides against Cells of Candida albicans Demonstrate Presence of Species, Morphology and Region Specific Carbohydrate Epitopes

    Get PDF
    Candida albicans is a commensal opportunistic pathogen, which can cause superficial infections as well as systemic infections in immuocompromised hosts. Among nosocomial fungal infections, infections by C. albicans are associated with highest mortality rates even though incidence of infections by other related species is on the rise world over. Since C. albicans and other Candida species differ in their susceptibility to antifungal drug treatment, it is crucial to accurately identify the species for effective drug treatment. Most diagnostic tests that differentiate between C. albicans and other Candida species are time consuming, as they necessarily involve laboratory culturing. Others, which employ highly sensitive PCR based technologies often, yield false positives which is equally dangerous since that leads to unnecessary antifungal treatment. This is the first report of phage display technology based identification of short peptide sequences that can distinguish C. albicans from other closely related species. The peptides also show high degree of specificity towards its different morphological forms. Using fluorescence microscopy, we show that the peptides bind on the surface of these cells and obtained clones that could even specifically bind to only specific regions of cells indicating restricted distribution of the epitopes. What was peculiar and interesting was that the epitopes were carbohydrate in nature. This gives insight into the complexity of the carbohydrate composition of fungal cell walls. In an ELISA format these peptides allow specific detection of relatively small numbers of C. albicans cells. Hence, if used in combination, such a test could help accurate diagnosis and allow physicians to initiate appropriate drug therapy on time

    Candida tropicalis antifungal cross-resistance is related to different azole target (Erg11p) modifications

    Get PDF
    ABSTARCT: Candida tropicalis ranks between third and fourth among Candida species most commonly isolated from clinical specimens. Invasive candidiasis and candidemia are treated with amphotericin B or echinocandins as first-line therapy, with extended-spectrum triazoles as acceptable alternatives. Candida tropicalis is usually susceptible to all antifungal agents, although several azole drug-resistant clinical isolates are being reported. However, C. tropicalis resistant to amphotericin B is uncommon, and only a few strains have reliably demonstrated a high level of resistance to this agent. The resistance mechanisms operating in C. tropicalis strains isolated from clinical samples showing resistance to azole drugs alone or with amphotericin B cross-resistance were elucidated. Antifungal drug resistance was related to mutations of the azole target (Erg11p) with or without alterations of the ergosterol biosynthesis pathway. The antifungal drug resistance shown in vitro correlated very well with the results obtained in vivo using the model host Galleria mellonella. Using this panel of strains, the G. mellonella model system was validated as a simple, nonmammalian minihost model that can be used to study in vitro-in vivo correlation of antifungals in C. tropicalis. The development in C. tropicalis of antifungal drug resistance with different mechanisms during antifungal treatment has potential clinical impact and deserves specific prospective studies

    Detection of Candida dubliniensis

    No full text

    Comparative study of seven commercial yeast identification systems.

    No full text
    AIMS: To compare the performance of seven commercial yeast identification methods with that of a reference method, and to compare the costs of the commercial kits. METHODS: Clinical yeast isolates (n = 52), comprising 19 species, were identified using Vitek, Api ID 32C, Api 20C AUX, Yeast Star, Auxacolor, RapID Yeast Plus system, and Api Candida and compared with a reference method which employed conventional tests. RESULTS: The percentage of correctly identified isolates varied between 59.6% and 80.8%. Overall, the highest performance was obtained with Api Candida (78.8%) and Auxacolor (80.8%). Among germ tube negative yeast isolates, Auxacolor and Api Candida both identified 93.1% of isolates correctly. All systems failed to identify C norvegensis, C catenulata, C haemulonii, and C dubliniensis. In comparison with Auxacolor, the Api Candida is less expensive and requires less bench time. CONCLUSIONS: Auxacolor and Api Candida appeared to be the most useful systems for identification of germ tube negative yeast isolates in clinical microbiology laboratories, although one should be aware that several germ tube negative Candida species cannot be identified by these systems
    corecore