6 research outputs found

    UDP-Glycosyltransferases from the UGT344 Family Are Involved in Sulfoxaflor Resistance in Aphis gossypii Glover

    No full text
    UDP-glycosyltransferases (UGTs) are major phase II detoxification enzymes that catalyze the transfer of glycosyl residues from activated nucleotide sugars to acceptor hydrophobic molecules and play very important roles in the biotransformation of various endogenous and exogenous compounds. Our previous studies demonstrated that UGTs participated in the detoxification of insecticides in Aphis gossypii. However, the potential roles of UGTs in A. gossypii resistance to sulfoxaflor are still unclear. In this study, two inhibitors of UGT enzymes, sulfinpyrazone and 5-nitrouracil, significantly increased the toxicity of sulfoxaflor to a resistant strain of A. gossypii, whereas there were no synergistic effects in the susceptible strain. Based on the transcriptome sequencing results, the expression levels of 15 UGTs were analyzed by quantitative real-time PCR, and we found that seven UGT genes were highly over-expressed in a sulfoxaflor-resistant strain compared to the susceptible strain, including UGT344B4, UGT344C5, UGT344A11, UGT344A14, and UGT344L2. Further suppressing the expression of UGT344B4, UGT344C5, and UGT344A11 by RNA interference significantly increased the sensitivity of resistant aphids to sulfoxaflor, indicating that the overexpression of UGT genes is potentially associated with sulfoxaflor resistance. These results could provide valuable information for further understanding the mechanisms of insecticide resistance

    Status of the Resistance of Aphis gossypii Glover, 1877 (Hemiptera: Aphididae) to Afidopyropen Originating from Microbial Secondary Metabolites in China

    No full text
    The resistance of cotton aphids to various forms of commonly used pesticides has seriously threatened the safety of the cotton production. Afidopyropen is a derivative of microbial metabolites with pyropene insecticide, which has been shown to be effective in the management of Aphis gossypii. Several field populations of Aphis gossypii were collected from the major cotton-producing regions of China from 2019 to 2021. The resistance of these populations to afidopyropen was estimated using the leaf-dipping method. The LC50 values of these field populations ranged from 0.005 to 0.591 mg a.i. L−1 in 2019, from 0.174 to 4.963 mg a.i. L−1 in 2020 and from 0.517 to 14.16 mg a.i. L−1 in 2021. The resistance ratios for all A. gossypii populations ranged from 0.03 to 3.97 in 2019, from 1.17 to 33.3 in 2020 and from 3.47 to 95.06 in 2021. The afidopyropen resistance exhibited an increasing trend in the field populations of Cangzhou, Binzhou, Yuncheng, Kuerle, Kuitun, Changji and Shawan from 2019 to 2021. This suggests that the resistance development of the cotton aphid to afidopyropen is inevitable. Therefore, it is necessary to rotate or mix afidopyropen with other insecticides in order to inhibit the development of afidopyropen resistance in field populations

    Toxicity and sublethal effects of two plant allelochemicals on the demographical traits of cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae).

    No full text
    Plant allelochemicals are a group of secondary metabolites produced by plants to defend against herbivore. The mortality of two plant allelochemicals (tannic acid and gossypol) on the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), were investigated using feeding assays and the sublethal effects were evaluated using the age-stage, two-sex life table approach. Tannic acid and gossypol have deleterious effects on A. gossypii, and as the concentrations increased, the mortality of cotton aphid increased. The life history traits of A. gossypii including the developmental duration of each nymph stage, the longevity, oviposition days, total preadult survival rate and adult pre-oviposition period were not significantly affected by sublethal concentration of tannic acid (20 mg/L) and gossypol (50 mg/L), while the population parameters (r, λ and R0) were significantly affected by these two plant allelochemicals. Furthermore, tannic acid can increase the pre-adult duration time and TPOP but reduce the fecundity of A. gossypii significantly compared to the control and gossypol treatment groups. These results are helpful for comprehensively understanding the effects of plant allelochemicals on A. gossypii

    Establishment of Toxicity and Susceptibility Baseline of Broflanilide for Aphis gossypii Glove

    No full text
    The Aphis gossypii is an important pest that can damage cotton plants and can cause a huge economic loss worldwide. Chemical control is a main method to manage this pest, but the cotton aphid resistance to insecticides has become a severe problem in the management of the cotton aphid. It is important to introduce a novel insecticide for rotational application with other insecticides. Broflanilide, as a meta-diamide insecticide with a special mode of action, showed high efficiency against lepidopterous larvae. However, we found that broflanilide possessed high insecticidal activity against the sap-sucking pest A. gossypii. The susceptibility of A. gossypii to broflanilide from 20 field populations in main cotton planting areas of China in 2021 was determined by the leaf-dipping method. LC50 values of broflanilide to A. gossypii ranged from 0.20 μg mL−1 to 1.48 μg mL−1. The susceptible baseline of A. gossypii to broflanilide was established with the LC50 value of 0.41 μg mL−1 and might be used to calculate the resistance ratio (RR) of cotton aphid population in broflanilide resistance monitoring. The RR value of field populations in China was from 0.49 to 3.61 in 2021. It suggested that the broflanilide may be a potential agent in the resistance management of A. gossypii to insecticides. These results are significantly useful for the rational chemical control of cotton aphids
    corecore