4 research outputs found

    ANTIAGING COMPOUNDS FROM FOOD SOURCES: MECHANISM OF ACTION

    No full text
    Ph.DDOCTOR OF PHILOSOPHY (FOS

    Enrichment of Wheat Bread with Platycodon grandiflorus Root (PGR) Flour: Rheological Properties and Microstructure of Dough and Physicochemical Characterization of Bread

    No full text
    Platycodon grandiflorus (Jacq.) A.DC. root (PGR) flour is well known for its medical and edible values. In order to develop nutritionally fortified products, breads were prepared using wheat flour, partially replaced with PGR flour. The rheological properties and microstructure of dough and the physicochemical characterization of bread were investigated. Results showed that lower level of PGR addition (3 and 6 g/100 g) would improve the baking performance of breads, while the higher level of PGR addition (9 g/100 g) led to smaller specific volume (3.78 mL/g), increased hardness (7.5 ± 1.35 N), and unpalatable mouthfeel (21.8% of resilience and 92.6% of springiness) since its negative effect on the viscoelasticity and microstructure of dough. Moreover, sensory evaluation analysis also showed that the PGR3 and PGR6 breads exhibited a similar flavor to the control bread, but the 9 g/100 g addition of PGR provided bread with an unpleasant odor through its richer volatile components. As expected, the phenolic content and antioxidant capacity of bread increased significantly (p < 0.05) as PGR flour was added to the bread formulation. The total phenolic content (TPC) ranged from 14.23 to 22.36 g GAE/g; thus, DPPH• and ABTS•+ scavenging capacity increased from 10.44 and 10.06 μg Trolox/g to 14.69 and 15.12 μg Trolox/g, respectively. Therefore, our findings emphasized the feasibility of PGR flour partially replacing wheat flour in bread-making systems

    Structure and Anti-Inflammatory Activity Relationship of Ergostanes and Lanostanes in Antrodia cinnamomea

    No full text
    Antrodia cinnamomea is a precious edible mushroom originating from Taiwan that has been popularly used for adjuvant hepatoprotection and anti-inflammation; however, the chemical principle for its anti-inflammatory activity has not been elucidated, which prevents the quality control of related products. Using the RAW264.7 model for the anti-inflammatory activity assay as a guide, we reported the isolation and structural elucidation of three potent anti-inflammatory compounds from isolated ergostanes (16) and lanostanes (6). Their structures were elucidated on the basis of spectroscopic data analysis including NMR and HR-QTOF-MS. Particularly, the absolute configurations of (25R)-antcin K, (25R)-antcin A, versisponic acid D, and (25R)-antcin C were determined by single crystal X-ray diffraction (XRD). The representative and most promising compound antcin A was shown to suppress pro-inflammatory biomolecule release via the down-regulation of iNOS and COX-2 expression through the NF-κB pathway while the mRNA levels of IL-1β, TNF-α and IL-6 were also decreased. The high dependency on structural variation and activity suggests that there might be special biological targets for antcin A. Our work makes it possible to develop evidence-based dietary supplements from Antrodia cinnamomea based on anti-inflammatory constituents
    corecore