20 research outputs found
Multiple wavelengths texture measurement using angle dispersive neutron diffraction at wombat
In contrast to conventional angle dispersive neutron diffractometers with a single-tube detector or a small-size linear position-sensitive detector, the WOMBAT diffractometer of the Australian Nuclear Science and Technology Organisation (ANSTO) is equipped with a large-area curved position-sensitive detector, spanning 120◦ for the scattering angle 2θ and 15◦ for the azimuth η, respectively. Here, WOMBAT was employed in establishing a texture measurement environment for complex textured samples, through measuring neutron diffractograms at two selected wavelengths on a typical reference sample of martensite–austenite multilayered steel sheet. All neutron patterns were simultaneously Rietveld analyzed using the software, Materials Analysis Using Diffraction (MAUD). The shorter wavelength (λ1 = 1.54 Å, k1 = 4.08 Å−1) enabled collecting the martensite reflections α-110, α-200, α-211, α-220, α-310, and α-222, as well as the austenite peaks γ-111, γ-200, γ-220, γ-311, γ-222, and γ-331 simultaneously, by pre-setting the detector range to 2Θ = 30~150◦. The longer wavelength (λ2 = 2.41 Å, k2 = 2.61 Å−1) enabled separating the overlapping strong martensite α-110 and austenite γ-111 Laue–Bragg interferences more reliably. Moreover, the detector panel division along the vertical direction has a good stereographic coverage in the azimuthal angle η,. Such a combination of multiple-wavelength neutron diffraction combined with simultaneous Rietveld texture analysis was confirmed as being very valuable for realizing high precision measurements for complex textured samples at an orientation distribution graticule of 5◦, and in a much shorter beam time than the conventional angle dispersive method
Evaluation of Residual Stress Relaxation in a Rolled Joint by Neutron Diffraction
The rolled joint of a pressure tube, consisting of three axial symmetric parts, modified SUS403 stainless steel as an inner extension, Zr–2.5Nb as the pressure tube and an Inconel-718 outer sleeve has been examined by neutron diffraction for residual stresses. It was heat treated to 350 °C for 30, 130 and 635 h to simulate thermal aging over the lifetime of an advanced thermal reactor respectively for 1, 5 and 30 years at an operating temperature of 288 °C. The crystallographic texture has been investigated from cylindric disks cut from the heat treated Zr–2.5Nb pressure tube to determine the proper sample-orientation-dependent hkl reflections for reliable residual strain measurements. Corresponding in situ tensile deformation was carried out to obtain the necessary diffraction elastic constants for the residual stress evaluation. Three-dimensional crystal lattice strains at various locations in the rolled joint before and after the aging treatments for various times were non-destructively measured by neutron diffraction and the residual stress distribution in the rolled joint was evaluated by using the Kröner elastic model and the generalized Hooke’s law. In the crimp region of the rolled joint, it was found that the aging treatment had a much weaker effect on the residual stresses in the Inconel outer sleeve and the modified SUS403 stainless steel extension. In the non-aged Zr–2.5Nb pressure tube, the highest residual stresses were found near its interface with the modified SUS430 stainless steel extension. In the crimp region of the Zr–2.5Nb pressure tube near its interface with the modified SUS430 stainless steel, the average compressive axial stress was −440 MPa, having no evident change during the long-time aging. In the Zr–2.5Nb pressure tube outside closest to the crimp region, the tensile axial and hoop stresses were relieved during the 30 h of aging. The hoop stresses in the crimp region evolved from an average tensile stress of 80 MPa to an average compressive stress of 230 MPa after the 635 h of aging, suggesting that the rolled joint had a good long-term sealing ability against leakage of high temperature water. In the Zr–2.5Nb pressure tube close to the reactor core and far away from the modified SUS403 stainless steel extension, the residual stresses near the inside surface of the pressure tube were almost zero, helping to keep a good neutron irradiation resistance
Principal Preferred Orientation Evaluation of Steel Materials Using Time-of-Flight Neutron Diffraction
Comprehensive information on in situ microstructural and crystallographic changes during the preparation/manufacturing processes of various materials is highly necessary to precisely control the microstructural morphology and the preferred orientation (or texture) characteristics for achieving an excellent strength–ductility–toughness balance in advanced engineering materials. In this study, in situ isothermal annealing experiments with cold-rolled 17Ni-0.2C (mass%) martensitic steel sheets were carried out by using the TAKUMI and ENGIN-X time-of-flight neutron diffractometers. The inverse pole figures based on full-profile refinement were extracted to roughly evaluate the preferred orientation features along three principal sample directions of the investigated steel sheets, using the General Structure Analysis System (GSAS) software with built-in generalized spherical harmonic functions. The consistent rolling direction (RD) inverse pole figures from TAKUMI and ENGIN-X confirmed that the time-of-flight neutron diffraction has high repeatability and statistical reliability, revealing that the principal preferred orientation evaluation of steel materials can be realized through 90° TD ➜ ND (transverse direction ➜ normal direction) rotation of the investigated specimen on the sample stage during two neutron diffraction experiments. Moreover, these RD, TD, and ND inverse pole figures before and after the in situ experiments were compared with the corresponding inverse pole figures recalculated from the MUSASI-L complete pole figure measurement and the HIPPO in situ microstructure evaluation, respectively. The similar orientation distribution characteristics suggested that the principal preferred orientation evaluation method can be applied to the in situ microstructural evolution of bulk orthorhombic materials and spatially resolved principal preferred orientation mappings of large engineering structure parts
Effect of storage environment on hydrogen generation by the reaction of Al with water
Al powder was stored in saturated water vapor, oxygen, nitrogen and drying air separately for a time period of up to six months, the degradation behavior of Al activity was characterized by the reaction of Al with water. It was found that water vapor decreased the induction time for the beginning of Al-water reaction and reduced the total hydrogen generation per unit weight of Al, while oxygen increased the induction time and retarded the Al-water reaction. In contrast, the effect of nitrogen and drying air on Al activity was weak. The mechanism analyses indicated that water vapor promoted the hydration of the Al surface passive oxide film and sped up the reaction of Al with water, while oxygen thickened the passive oxide film of the Al surface and prolonged its hydration process. These results imply that water vapor rather than oxygen is responsible for the degradation of Al activity during storage in the atmospheric environment
Kinetics study of the Al-water reaction promoted by an ultrasonically prepared Al(OH)3 suspension
The kinetics of the Al-water reaction promoted by an ultrasonically prepared Al(OH)3 suspension is investigated. It is found that the induction time for the beginning of the Al-water reaction decreases and the reaction rate increases with increasing suspension concentration, volume, and temperature, because the Al-water reaction is exothermic. When the weight ratio of Al to water increases to 1 : 15, there is almost no induction time, and more than 80% of Al in the Al(OH)3 suspension is consumed within 40 min, which is comparable to the behavior of Al in NaOH solution. A collision model based on Brownian motion is proposed to analyze the reaction process, which shows that the contact between Al and Al(OH)3 particles and the reaction heat are two key factors that control the reaction progress
Metabolomics to identify fingerprints of carotid atherosclerosis in nonobese metabolic dysfunction-associated fatty liver disease
Abstract Background/aims Nonobese metabolic dysfunction-associated fatty liver disease (MAFLD) is paradoxically associated with improved metabolic and pathological features at diagnosis but similar cardiovascular diseases (CVD) prognosis to obese MAFLD. We aimed to utilize the metabolomics to identify the potential metabolite profiles accounting for this phenomenon. Methods This prospective multicenter cross-sectional study was conducted in China enrolling derivation and validation cohorts. Liquid chromatography coupled with mass spectrometry and gas chromatography-mass spectrometry were applied to perform a metabolomics measurement. Results The study involved 120 MAFLD patients and 60 non-MAFLD controls in the derivation cohort. Controls were divided into two groups according to the presence of carotid atherosclerosis (CAS). The MAFLD group was further divided into nonobese MAFLD with/without CAS groups and obese MAFLD with/without CAS groups. Fifty-six metabolites were statistically significant for discriminating the six groups. Among the top 10 metabolites related to CAS in nonobese MAFLD, only phosphatidylethanolamine (PE 20:2/16:0), phosphatidylglycerol (PG 18:0/20:4) and de novo lipogenesis (16:0/18:2n-6) achieved significant areas under the ROC curve (AUCs, 0.67, p = 0.03; 0.79, p = 0.02; 0.63, p = 0.03, respectively). The combination of these three metabolites and liver stiffness achieved a significantly higher AUC (0.92, p < 0.01). In obese MAFLD patients, cystine was found to be significant with an AUC of 0.69 (p = 0.015), followed by sphingomyelin (SM 16:1/18:1) (0.71, p = 0.004) and de novo lipogenesis (16:0/18:2n-6) (0.73, p = 0.004). The combination of these three metabolites, liver fat content and age attained a significantly higher AUC of 0.91 (p < 0.001). The AUCs of these metabolites remained highly significant in the independent validation cohorts involving 200 MAFLD patients and 90 controls. Conclusions Diagnostic models combining different metabolites according to BMI categories could raise the accuracy of identifying subclinical CAS. Trial registration The study protocol was approved by the local ethics committee and all the participants have provided written informed consent (Approval number: [2014] No. 112, registered at the Chinese Clinical Trial Registry, ChiCTR-ChiCTR2000034197) Graphical Abstrac
Abnormal Grain Growth: A Spontaneous Activation of Competing Grain Rotation
Unconventional white-beam Laue synchrotron X-ray diffraction is used on fine-grained, as-rolled magnesium alloy during an in situ heating experiment. At high temperatures, reflections of single grains are superimposed on the halo stemming from matrix grains. Some unique grain reflections spontaneously move, indicating grain rotations in response to torque expedited at grain boundaries. When a grain boundary spontaneously activates, it can begin to rotate, allowing diffusive mass transport and activating the boundaries of its other neighbors. Now the given grain can freely rotate toward coalescence; however, the multitude of grain boundaries compete in torque orientation and magnitude, resulting in zigzag rotations. After coalescence, the larger grain is still active and continues this scenario of growth, while the majority of the matrix grains remain inactive. The first-time experimental observation of such erratic grain behavior supplies the missing puzzlestone leading to anomalous grain growth, long postulated in literature. The method of white beam Laue diffraction on fine-grained polycrystalline materials delivers a novel experimental method to study the erratic behavior of grain reorientation, as requested long ago by the scientific community. Such findings apply to wide ranges of materials undergoing grain growth, creep, and superplasticity, including those in metal engineering, ceramics, and geophysical disciplines