22 research outputs found

    Using Video to Validate Vehicle Speed Uncertainty in Vertical Side Collisions

    Get PDF
    Vehicle speed access is an important part of road traffic accidents. Many factors affect the speed of the vehicle in vertical side collisions. Uncertainty in speed calculations related to vehicle collision was researched. The main parameters which have a greater impact on the speed of calculation results were discussed. And speed calculation methods based on uncertainty factors have been analyzed. By use of the vehicle vertical side collisions case, the speed of uncertainty has been carried out. Combined with accident surveillance video, the video picture computed speed and uncertainty factors obtained speed were compared. The results showed that selected road adhesion coefficient, vehicle weight and other parameters as the uncertainty factors, the use of uncertainty obtained speed with high reliability of forensic, which can be used in accident reconstruction

    IL-2 Inhibition of Th17 Generation Rather Than Induction of Treg Cells Is Impaired in Primary Sjögren’s Syndrome Patients

    Get PDF
    ObjectiveTo investigate the role of IL-2 in the balance of Th17 and Tregs and elucidate the underlying mechanisms of enhanced Th17 differentiation in primary Sjögren’s syndrome (pSS) patients.MethodsThis study involved 31 pSS patients, 7 Sicca patients, and 31 healthy subjects. Th17 and Treg cells were determined by flow cytometry, and IL-17A was detected by immunohistochemistry. IL-2 and IL-6 levels were assessed by ELISA and qPCR. p-STAT5 and p-STAT3 in salivary glands (SGs) were evaluated by immunohistochemistry and flow cytometry. The binding of STAT5 and STAT3 to the Il17a gene locus was measured by chromatin immunoprecipitation.ResultsWe found that the percentage of Th17 cells was increased in the periphery and SG of pSS patients when compared with healthy subjects, but the Treg cells was unchanged. Meanwhile, the IL-2 level was reduced, and the IL-6 and IL-17A level was increased in the plasma of pSS patients. The ratio of IL-2 and IL-6 level was also decreased and IL-2 level was negatively correlated with the level of IL-17A. The expression of Il6 and Il17a mRNA was significantly increased, whereas Foxp3, Tgfb1, Tnfa, and Ifng mRNA were comparable. Furthermore, the level of STAT5 phosphorylation (p-STAT5) was reduced and p-STAT3 was enhanced in the SGs and in peripheral CD4+ T cells of pSS patients. In vitro IL-2 treatment-induced STAT5 competed with STAT3 binding in human Il17a locus, leading to decreased Th17 differentiation, which was associated with the reduced transcription activation marker H3K4me3.ConclusionOur findings demonstrated a Treg-independent upregulation of Th17 generation in pSS, which is likely due to a lack of IL-2-mediated suppression of Th17 differentiation. This study identified a novel mechanism of IL-2-mediated immune suppression in pSS

    Design for invention: annotation of Functional Geometry Interaction for representing novel working principles

    Get PDF
    In some mechanical engineering devices the novelty or inventive step of a patented design relies heavily upon how geometric features contribute to device functions. Communicating the functional interactions between geometric features in existing patented designs may increase a designer’s awareness of the prior art and thereby avoid conflict with their emerging design. This paper shows how functional representations of geometry interactions can be developed from patent claims to produce novel semantic graphical and text annotations of patent drawings. The approach provides a quick and accurate means for the designer to understand the patent that is well suited to the designer’s natural way of understanding the device. Through several example application cases we show the application of a detailed representation of Functional Geometry Interactions that captures the working principle of familiar mechanical engineering devices described in patents. A computer tool that is being developed to assist the designer to understand prior art is also described

    Study of instability mechanisms of trucks turning right at long downhill T-junctions based on Trucksim simulation.

    No full text
    The aim of this study was to investigate the influence of road factors on the safety speed threshold of a lorry turning right around a corner at a the bottom of a long downhill T-junction. Trucksim simulation software was chosen to construct a model for investigating the turning instability mechanism. A three-axle truck was chosen as the simulation vehicle and road adhesion coefficients of 0.2-0.75, road super-elevations of -2-8%, turning radii of 20-100 m, and vehicle overcharge of 0-100% selected for tuning. Simulation experiments were carried out for different bending conditions, investigating the effects of each influencing factor on the destabilization speed threshold using the control variable method. The vehicle's lateral load transfer rate and lateral acceleration were indicators for determining whether a truck was unstable. The results showed that: a) the turning radius had the most significant influence on the speed threshold for cornering instability; b) the road surface adhesion coefficient and vehicle overweight had secondary effects; and c) the road height had a general influence

    Study of AEB and active seat belt on driver injury in vehicle–vehicle frontal oblique crash

    No full text
    Abstract The safety of vehicle occupants in oblique collision scenarios continues to pose challenges, even with the implementation of Automatic Emergency Braking (AEB) systems. While AEB reduces collision risks, studies indicate it may heighten injury risks for out-of-position (OOP) occupants. To counteract this issue, the integration of active seat belts in vehicles equipped with AEB systems is recommended. Firstly, this study established an oblique angle collision scenario post-AEB activation using data from the Chinese National Automobile Accident In-depth Investigation System (NAIS) database, analyzed through Prescan software. The dynamic response of the vehicle was examined. Following this, finite element (FE) models were validated to assess the effects of collision overlap rate, AEB braking strategy, and active seat belt pre-tensioning on occupant injuries and kinematics. Under specific collision conditions, the impact of the timing and amount of seat belt pre-tensioning, as well as airbag deployment timing on occupant injuries, was also explored. Findings revealed that a 75% collision overlap rate significantly increases driver injury risk. Active seat belts effectively mitigate injuries caused by OOP statuses during AEB interventions, with the lowest Weighted Injury Criterion (WIC) observed at a pre-tensioning time of 200 ms for active seat belts. The study further suggests that optimal results in reducing occupant injuries are achieved when active pre-tensioning seat belts are complemented by appropriately timed airbag deployment

    Mechanisms of Triptolide-Induced Hepatotoxicity and Protective Effect of Combined Use of Isoliquiritigenin: Possible Roles of Nrf2 and Hepatic Transporters

    No full text
    Triptolide (TP), the main bioactive component of Tripterygium wilfordii Hook F, can cause severe hepatotoxicity. Isoliquiritigenin (ISL) has been reported to be able to protect against TP-induced liver injury, but the mechanisms are not fully elucidated. This study aims to explore the role of nuclear transcription factor E2-related factor 2 (Nrf2) and hepatic transporters in TP-induced hepatotoxicity and the reversal protective effect of ISL. TP treatment caused both cytotoxicity in L02 hepatocytes and acute liver injury in mice. Particularly, TP led to the disorder of bile acid (BA) profiles in mice livers. Combined treatment of TP with ISL effectively alleviated TP-induced hepatotoxicity. Furthermore, ISL pretreatment enhanced Nrf2 expressions and nuclear accumulations and its downstream NAD(P)H: quinine oxidoreductase 1 (NQO1) expression. Expressions of hepatic P-gp, MRP2, MRP4, bile salt export pump, and OATP2 were also induced. In addition, in vitro transport assays identified that neither was TP exported by MRP2, OATP1B1, or OATP1B3, nor did TP influence the transport activities of P-gp or MRP2. All these results indicate that ISL may reduce the hepatic oxidative stress and hepatic accumulations of both endogenous BAs and exogenous TP as well as its metabolites by enhancing the expressions of Nrf2, NQO1, and hepatic influx and efflux transporters. Effects of TP on hepatic transporters are mainly at the transcriptional levels, and changes of hepatic BA profiles are very important in the mechanisms of TP-induced hepatotoxicity

    The clinical value of carcinoembryonic antigen for tumor metastasis assessment in lung cancer

    No full text
    Background Carcinoembryonic antigen (CEA) as a diagnostic or prognostic marker has been widely studied in patients with lung cancer. However, the relationship between serum CEA and tumor metastasis in lung cancer remains controversial. This study aimed to investigate the ability of serum CEA to assess tumor metastasis in lung cancer patients. Methods We performed a retrospective analysis of 238 patients diagnosed with lung cancer from January to December 2016 at pneumology department of Dazhou Central Hospital (Dazhou, China). Serum CEA levels were quantified in each patient at the time of diagnosis of lung cancer. Metastasis was confirmed by computed tomography (CT), and/or positron emission tomography (PET) and/or surgery or other necessary detecting methods. Results Of the 213 patients eligible for final analysis, 128 were diagnosed with metastasis and 85 were diagnosed without metastasis. Compared to non-metastatic patients, the serum CEA was markedly higher in patients with metastasis (p < 0.001), and the area under the curve (AUC) was 0.724 (95% CI [0.654–0.793]). Subsequent analyses regarding the number and location of tumor metastases showed that CEA also had clinical value for multiple metastases versus single metastasis (AUC = 0.780, 95% CI [0.699–0.862]) and distant metastasis versus non-distant metastasis (AUC = 0.815, 95% CI [0.733–0.897]). In addition, we found that tumor size, histology diagnosis, age and gender had no impact on the assessment performance of CEA. Conclusion Our study suggested the serum CEA as a valuable marker for tumor metastases assessment in newly diagnosed lung cancer patients, which could have some implications in clinical application

    <i>Altered brassinolide sensitivity1</i> Regulates Fruit Size in Association with Phytohormones Modulation in Tomato

    No full text
    BRs (Brassinosteroids) regulate many essential pathways related to growth, cell elongation, cell expansion, plant architecture, and fruit development. The potential exogenous application of BR-derivatives has been proven to stimulate plant growth and development, including quality attributes of fruits, whereas its biosynthesis inhibition has shown the opposite effect. In this study, BR-insensitive tomato mutants were used to reveal the potential function of BR signaling in the regulation of fruit development to elaborate the regulatory mechanism of BR signaling in tomato fruits. The BR-signaling mutant exhibited a typical dwarf phenotype and reduced vegetative growth, fruit size, and weight. Microscopic and transcriptional evaluation of the abs1 mutant fruits implies that reduced cell size and number are responsible for the phenotypic variations. Additionally, we also found that the altered content of phytohormones, such as auxin, gibberellin, cytokinin, and ethylene levels, contributed to altered fruit development. Moreover, fruit growth and cell development-specific gene expression levels were downregulated in BR-insensitive plants; culminating in reduced cell size, cell number, and cell layers. These findings provide insight into physio-chemical changes during fruit development in response to BR-insensitivity

    Altered brassinolide sensitivity1 Regulates Fruit Size in Association with Phytohormones Modulation in Tomato

    No full text
    BRs (Brassinosteroids) regulate many essential pathways related to growth, cell elongation, cell expansion, plant architecture, and fruit development. The potential exogenous application of BR-derivatives has been proven to stimulate plant growth and development, including quality attributes of fruits, whereas its biosynthesis inhibition has shown the opposite effect. In this study, BR-insensitive tomato mutants were used to reveal the potential function of BR signaling in the regulation of fruit development to elaborate the regulatory mechanism of BR signaling in tomato fruits. The BR-signaling mutant exhibited a typical dwarf phenotype and reduced vegetative growth, fruit size, and weight. Microscopic and transcriptional evaluation of the abs1 mutant fruits implies that reduced cell size and number are responsible for the phenotypic variations. Additionally, we also found that the altered content of phytohormones, such as auxin, gibberellin, cytokinin, and ethylene levels, contributed to altered fruit development. Moreover, fruit growth and cell development-specific gene expression levels were downregulated in BR-insensitive plants; culminating in reduced cell size, cell number, and cell layers. These findings provide insight into physio-chemical changes during fruit development in response to BR-insensitivity
    corecore