2,502 research outputs found

    Anatomy of BsPVB_s \to PV decays and effects of next-to-leading order contributions in the perturbative QCD factorization approach

    Full text link
    In this paper, we will make systematic calculations for the branching ratios and the CP-violating asymmetries of the twenty one Bˉs0PV\bar{B}^0_s \to PV decays by employing the perturbative QCD (PQCD) factorization approach. Besides the full leading-order (LO) contributions, all currently known next-to-leading order (NLO) contributions are taken into account. We found numerically that: (a) the NLO contributions can provide 40%\sim 40\% enhancement to the LO PQCD predictions for B(Bˉs0K0Kˉ0){\cal B}(\bar{B}_s^0 \to K^0 \bar{K}^{*0}) and B(Bˉs0K±K) {\cal B}(\bar{B}_s^0 \to K^{\pm}K^{*\mp}), or a 37%\sim 37\% reduction to \calb(\bar{B}_s^0 \to \pi^{-} K^{*+}), and we confirmed that the inclusion of the known NLO contributions can improve significantly the agreement between the theory and those currently available experimental measurements, (b) the total effects on the PQCD predictions for the relevant BPB\to P transition form factors after the inclusion of the NLO twist-2 and twist-3 contributions is generally small in magnitude: less than 10% 10\% enhancement respect to the leading order result, (c) for the "tree" dominated decay Bˉs0K+ρ\bar B_s^0\to K^+ \rho^- and the "color-suppressed-tree" decay Bˉs0π0K0\bar B_s^0\to \pi^0 K^{*0}, the big difference between the PQCD predictions for their branching ratios are induced by different topological structure and by interference effects among the decay amplitude AT,C{\cal A}_{T,C} and AP{\cal A}_P: constructive for the first decay but destructive for the second one, and (d) for \bar{B}_s^0 \to V(\eta, \etar) decays, the complex pattern of the PQCD predictions for their branching ratios can be understood by rather different topological structures and the interference effects between the decay amplitude \cala(V\eta_q) and \cala(V\eta_s) due to the \eta-\etar mixing.Comment: 18 pages, 2 figures, 3 tables. Some modifications of the text. Several new references are adde

    TAS-Based Incremental Hybrid Decode–Amplify–Forward Relaying for Physical Layer Security Enhancement

    Get PDF
    In this paper, a transmit antenna selection (TAS)- based incremental hybrid decode-amplify-forward (IHDAF) scheme is proposed to enhance physical layer security in cooperative relay networks. Specifically, TAS is adopted at the source in order to reduce the feedback overhead. In the proposed TAS-based IHDAF scheme, the network transmits signals to the destination adaptive select direction transmission mode, AF mode or DF mode depending on the capacity of the source-relay link and source-relay link. In order to fully examine the benefits of the proposed TAS-based IHDAF scheme, we first derive its secrecy outage probability (SOP) in a closed-form expression. We then conduct asymptotic analysis on the SOP, which reveals the secrecy performance floor of the proposed TAS-based IHDAF scheme when no channel state information is available at the source. Theoretical analysis and simulation results demonstrate that the proposed TAS-based IHDAF scheme outperforms the selective decode-and-forward (SDF), the incremental decodeand-forward (IDF), and the noncooperative direction transmission (DT) schemes in terms of the SOP and effective secrecy throughout, especially when the relay is close to the destination. Furthermore, the proposed TAS-based IHDAF scheme offer a good trade-off between complexity and performance compare with using all antennas at the source.ARC Discovery Projects Grant DP150103905

    Topological triply-degenerate point with double Fermi arcs

    Full text link
    Unconventional chiral particles have recently been predicted to appear in certain three dimensional (3D) crystal structures containing three- or more-fold linear band degeneracy points (BDPs). These BDPs carry topological charges, but are distinct from the standard twofold Weyl points or fourfold Dirac points, and cannot be described in terms of an emergent relativistic field theory. Here, we report on the experimental observation of a topological threefold BDP in a 3D phononic crystal. Using direct acoustic field mapping, we demonstrate the existence of the threefold BDP in the bulk bandstructure, as well as doubled Fermi arcs of surface states consistent with a topological charge of 2. Another novel BDP, similar to a Dirac point but carrying nonzero topological charge, is connected to the threefold BDP via the doubled Fermi arcs. These findings pave the way to using these unconventional particles for exploring new emergent physical phenomena
    corecore