4,360 research outputs found
The Effect of Radiative Cooling on the Sunyaev-Zel'dovich Cluster Counts and Angular Power Spectrum: Analytic Treatment
Recently, the entropy excess detected in the central cores of groups and
clusters has been successfully interpreted as being due to radiative cooling of
the hot intragroup/intracluster gas. In such a scenario, the entropy floors
in groups/clusters at any given redshift are completely
determined by the conservation of energy. In combination with the equation of
hydrostatic equilibrium and the universal density profile for dark matter, this
allows us to derive the remaining gas distribution of groups and clusters after
the cooled material is removed. Together with the Press-Schechter mass function
we are able to evaluate effectively how radiative cooling can modify the
predictions of SZ cluster counts and power spectrum. It appears that our
analytic results are in good agreement with those found by hydrodynamical
simulations. Namely, cooling leads to a moderate decrease of the predicted SZ
cluster counts and power spectrum as compared with standard scenario. However,
without taking into account energy feedback from star formation which may
greatly suppress cooling efficiency, it is still premature to claim that this
modification is significant for the cosmological applications of cluster SZ
effect.Comment: 16 pages, 3 figures, uses aastex.cls. ApJ accepte
Chern dartboard insulator: sub-Brillouin zone topology and skyrmion multipoles
Topology plays a crucial role in many physical systems, leading to
interesting states at the surface. The paradigmatic example is the Chern number
defined in the Brillouin zone that leads to the robust gapless edge states.
Here we introduce the reduced Chern number, defined in subregions of the
Brillouin zone (BZ), and construct a family of Chern dartboard insulators
(CDIs) with quantized reduced Chern numbers in the sub-BZ (sBZ) but with
trivial bulk topology. CDIs are protected by mirror symmetries and exhibit
distinct pseudospin textures, including (anti)skyrmions, inside the sBZ. These
CDIs host exotic gapless edge states, such as M\"{o}bius fermions and midgap
corner states, and can be realized in photonic crystals. Our work opens up new
possibilities for exploring sBZ topology and nontrivial surface responses in
topological systems
Spindle oscillations are generated in the dorsal thalamus and modulated by the thalamic reticular nucleus
Spindle waves occur during the early stage of slow wave sleep and are thought to arise in the thalamic reticular nucleus (TRN), causing inhibitory postsynaptic potential spindle-like oscillations in the dorsal thalamus that are propagated to the cortex. We have found that thalamocortical neurons exhibit membrane oscillations that have spindle frequencies, consist of excitatory postsynaptic potentials, and co-occur with electroencephalographic spindles. TRN lesioning prolonged oscillations in the medial geniculate body (MGB) and auditory cortex (AC). Injection of GABA~A~ antagonist into the MGB decreased oscillation frequency, while injection of GABA~B~ antagonist increased spindle oscillations in the MGB and cortex. Thus, spindles originate in the dorsal thalamus and TRN inhibitory inputs modulate this process, with fast inhibition facilitating the internal frequency and slow inhibition limiting spindle occurrence
Investigating the topological structure of quenched lattice QCD with overlap fermions by using multi-probing approximation
The topological charge density and topological susceptibility are determined
by multi-probing approximation using overlap fermions in quenched SU(3) gauge
theory. Then we investigate the topological structure of the quenched QCD
vacuum, and compare it with results from the all-scale topological density, the
results are consistent. Random permuted topological charge density is used to
check whether these structures represent underlying ordered properties.
Pseudoscalar glueball mass is extracted from the two-point correlation function
of the topological charge density. We study ensembles of different lattice
spacing with the same lattice volume , the results are
compatible with the results of all-scale topological charge density, and the
topological structures revealed by multi-probing are much closer to all-scale
topological charge density than that by eigenmode expansion.Comment: 12 pages,34 figure
Investigation of the 1+1 dimensional Thirring model using the method of matrix product states
We present preliminary results of a study on the non-thermal phase structure
of the (1+1) dimensional massive Thirring model, employing the method of matrix
product states. Through investigating the entanglement entropy, the fermion
correlators and the chiral condensate, it is found that this approach enables
us to observe numerical evidence of a Kosterlitz-Thouless phase transition in
the model.Comment: 7 pages, 4 figures; contribution to the proceedings of Lattice 2018
conferenc
Quantum transport through a double Aharonov-Bohm-interferometer in the presence of Andreev reflection
Quantum transport through a double Aharonov-Bohm-interferometer in the
presence of Andreev reflection is investigated in terms of the nonequilibrium
Green function method with which the reflection current is obtained. Tunable
Andreev reflection probabilities depending on the interdot coupling strength
and magnetic flux as well are analysised in detail. It is found that the
oscillation period of the reflection probability with respect to the magnetic
flux for the double interferometer depends linearly on the ratio of two parts
magnetic fluxes n, i.e. 2(n+1)pi, while that of a single interferometer is 2pi.
The coupling strength not only affects the height and the linewidth of Andreev
reflection current peaks vs gate votage but also shifts the peak positions. It
is furthermore demonstrated that the Andreev reflection current peaks can be
tuned by the magnetic fluxes.Comment: 13 pages, 12 figur
ONLINE AUCTION EFFECTIVENESS: OPTIMAL SELLING STRATEGIES FOR ONLINE AUCTION MARKET
The introduction of internet auction has significantly widened the pool of consumers who participate in auctions and increased the number of companies attempting to sell their products in an auction format. Previous empirical research on auctions has focused almost exclusively on the behavior of professional bidders. In this study, we collect data on a large number of internet auctions to explore the outcome of the auction in a real marketplace. In particular, we focus on the characteristic of seller, auction parameter and the effect of supply and demand, and examine these impacts on auction effectiveness
- âŠ