7,795 research outputs found

    GSLAM: Initialization-robust Monocular Visual SLAM via Global Structure-from-Motion

    Full text link
    Many monocular visual SLAM algorithms are derived from incremental structure-from-motion (SfM) methods. This work proposes a novel monocular SLAM method which integrates recent advances made in global SfM. In particular, we present two main contributions to visual SLAM. First, we solve the visual odometry problem by a novel rank-1 matrix factorization technique which is more robust to the errors in map initialization. Second, we adopt a recent global SfM method for the pose-graph optimization, which leads to a multi-stage linear formulation and enables L1 optimization for better robustness to false loops. The combination of these two approaches generates more robust reconstruction and is significantly faster (4X) than recent state-of-the-art SLAM systems. We also present a new dataset recorded with ground truth camera motion in a Vicon motion capture room, and compare our method to prior systems on it and established benchmark datasets.Comment: 3DV 2017 Project Page: https://frobelbest.github.io/gsla

    Linear Global Translation Estimation with Feature Tracks

    Full text link
    This paper derives a novel linear position constraint for cameras seeing a common scene point, which leads to a direct linear method for global camera translation estimation. Unlike previous solutions, this method deals with collinear camera motion and weak image association at the same time. The final linear formulation does not involve the coordinates of scene points, which makes it efficient even for large scale data. We solve the linear equation based on L1L_1 norm, which makes our system more robust to outliers in essential matrices and feature correspondences. We experiment this method on both sequentially captured images and unordered Internet images. The experiments demonstrate its strength in robustness, accuracy, and efficiency.Comment: Changes: 1. Adopt BMVC2015 style; 2. Combine sections 3 and 5; 3. Move "Evaluation on synthetic data" out to supplementary file; 4. Divide subsection "Evaluation on general data" to subsections "Experiment on sequential data" and "Experiment on unordered Internet data"; 5. Change Fig. 1 and Fig.8; 6. Move Fig. 6 and Fig. 7 to supplementary file; 7 Change some symbols; 8. Correct some typo

    The Short Run Impact of Scheduled Macroeconomic Announcements on the Australian Dollar during 1998

    Get PDF
    This study examines the high frequency reaction of the Australian Dollar (AUD) to new information contained in scheduled macroeconomic news releases in Australia for 1998 using Money Market Services trader expectations data. By using exchange rate data sampled at 10-second intervals, major price adjustments are found to begin almost immediately following the initial release of information and are complete within one minute of the announcement. There is some evidence of over-reaction after the initial release but returns in the first minute do not seem to have any meaningful structure that would enable prediction of returns in the second minute. The AUD appears to trade efficiently and the market absorbs new information quickly.

    Active Image-based Modeling with a Toy Drone

    Full text link
    Image-based modeling techniques can now generate photo-realistic 3D models from images. But it is up to users to provide high quality images with good coverage and view overlap, which makes the data capturing process tedious and time consuming. We seek to automate data capturing for image-based modeling. The core of our system is an iterative linear method to solve the multi-view stereo (MVS) problem quickly and plan the Next-Best-View (NBV) effectively. Our fast MVS algorithm enables online model reconstruction and quality assessment to determine the NBVs on the fly. We test our system with a toy unmanned aerial vehicle (UAV) in simulated, indoor and outdoor experiments. Results show that our system improves the efficiency of data acquisition and ensures the completeness of the final model.Comment: To be published on International Conference on Robotics and Automation 2018, Brisbane, Australia. Project Page: https://huangrui815.github.io/active-image-based-modeling/ The author's personal page: http://www.sfu.ca/~rha55
    • 

    corecore