1,849 research outputs found

    Freeze-in Dirac neutrinogenesis: thermal leptonic CP asymmetry

    Full text link
    We present a freeze-in realization of the Dirac neutrinogenesis in which the decaying particle that generates the lepton-number asymmetry is in thermal equilibrium. As the right-handed Dirac neutrinos are produced non-thermally, the lepton-number asymmetry is accumulated and partially converted to the baryon-number asymmetry via the rapid sphaleron transitions. The necessary CP-violating condition can be fulfilled by a purely thermal kinetic phase from the wavefunction correction in the lepton-doublet sector, which has been neglected in most leptogenesis-based setup. Furthermore, this condition necessitates a preferred flavor basis in which both the charged-lepton and neutrino Yukawa matrices are non-diagonal. To protect such a proper Yukawa structure from the basis transformations in flavor space prior to the electroweak gauge symmetry breaking, we can resort to a plethora of model buildings aimed at deciphering the non-trivial Yukawa structures. Interestingly, based on the well-known tri-bimaximal mixing with a minimal correction from the charged-lepton or neutrino sector, we find that a simultaneous explanation of the baryon-number asymmetry in the Universe and the low-energy neutrino oscillation observables can be attributed to the mixing angle and the CP-violating phase introduced in the minimal correction.Comment: 28 pages and 7 figures; more discussions and one figure added, final version published in the journa

    Two-probe study of hot carriers in reduced graphene oxide

    Full text link
    The energy relaxation of carriers in reduced graphene oxide thin films is studied using optical pump-probe spectroscopy with two probes of different colors. We measure the time difference between peaks of the carrier density at each probing energy by measuring a time-resolved differential transmission and find that the carrier density at the lower probing energy peaks later than that at the higher probing energy. Also, we find that the peak time for the lower probing energy shifts from about 92 to 37 fs after the higher probing energy peak as the carrier density is increased from 1.5E12 to 3E13 per square centimeter, while no noticeable shift is observed in that for the higher probing energy. Assuming the carriers rapidly thermalize after excitation, this indicates that the optical phonon emission time decreases from about 50 to about 20 fs and the energy relaxation rate increases from 4 to 10 meV/fs. The observed density dependence is inconsistent with the phonon bottleneck effect.Comment: 10 pages, 4 figure

    Femtosecond Pump-Probe Studies of Reduced Graphene Oxide Thin Films

    Get PDF
    The dynamics of photocarriers in reduced graphene oxide thin films is studied by using ultrafast pump-probe spectroscopy. Time dependent differential transmissions are measured with sample temperatures ranging from 9 to 300 K. At each sample temperature and probe delay, the sign of differential transmission remains positive. A fast energy relaxation of hot carriers is observed, and is found to be independent of sample temperature. Our experiments show that the carrier dynamics in reduced graphene oxide is similar to other types of graphene, and that the differential transmission is caused by phase-state filling of carriers.Comment: 3 pages, 3 figure

    The long-lasting optical afterglow plateau of short burst GRB 130912A

    Full text link
    The short burst GRB 130912A was detected by Swift, Fermi satellites and several ground-based optical telescopes. Its X-ray light curve decayed with time normally. The optical emission, however, displayed a long term plateau, which is the longest one in current short GRB observations. In this work we examine the physical origin of the X-ray and optical emission of this peculiar event. We find that the canonical forward shock afterglow emission model can account for the X-ray and optical data self-consistently and the energy injection model that has been widely adopted to interpret the shallowly-decaying afterglow emission is not needed. We also find that the burst was born in a very-low density interstellar medium, consistent with the compact object merger model. Significant fractions of the energy of the forward shock have been given to accelerate the non-thermal electrons and amplify the magnetic fields (i.e., ϵe0.37\epsilon_{\rm e}\sim 0.37 and ϵB0.16\epsilon_{\rm B}\sim 0.16, respectively), which are much larger than those inferred in most short burst afterglow modeling and can explain why the long-lasting optical afterglow plateau is rare in short GRBs.Comment: 5 pages, 2 figure
    corecore