15 research outputs found

    Measuring the equation of state of trapped ultracold bosonic systems in an optical lattice with in-situ density imaging

    Full text link
    We analyze quantitatively how imaging techniques with single-site resolution allow to measure thermodynamical properties that cannot be inferred from time-of-light images for the trapped Bose-Hubbard model. If the normal state extends over a sufficiently large range, the chemical potential and the temperature can be extracted from a single shot, provided the sample is in thermodynamic equilibrium. When the normal state is too narrow, temperature is low but can still be extracted using the fluctuation-dissipation theorem over the entire trap range as long as the local density approximation remains valid, as was recently suggested by Qi Zhou and Tin-Lun Ho [arXiv:0908.3015]. However, for typical present-day experiments, the number of samples needed is of the order of 1000 in order to get the temperature at least 10%10 \% accurate, but it is possible to reduce the variance by 2 orders of magnitude if the density-density correlation length is short, which is the case for the Bose-Hubbard model. Our results provide further evidence that cold gases in an optical lattices can be viewed as quantum analog computers.Comment: 8 pages, 10 figure

    Fidelity susceptibility made simple: A unified quantum Monte Carlo approach

    Full text link
    The fidelity susceptibility is a general purpose probe of phase transitions. With its origin in quantum information and in the differential geometry perspective of quantum states, the fidelity susceptibility can indicate the presence of a phase transition without prior knowledge of the local order parameter, as well as reveal the universal properties of a critical point. The wide applicability of the fidelity susceptibility to quantum many-body systems is, however, hindered by the limited computational tools to evaluate it. We present a generic, efficient, and elegant approach to compute the fidelity susceptibility of correlated fermions, bosons, and quantum spin systems in a broad range of quantum Monte Carlo methods. It can be applied both to the ground-state and non-zero temperature cases. The Monte Carlo estimator has a simple yet universal form, which can be efficiently evaluated in simulations. We demonstrate the power of this approach with applications to the Bose-Hubbard model, the spin-1/21/2 XXZ model, and use it to examine the hypothetical intermediate spin-liquid phase in the Hubbard model on the honeycomb lattice.Comment: new physical insight added in Sec. VI., improved data in Fig.

    Quantum Criticality from in-situ Density Imaging

    Full text link
    We perform large-scale Quantum Monte Carlo (QMC) simulations for strongly interacting bosons in a 2D optical lattice trap, and confirm an excellent agreement with the benchmarking in-situ density measurements by the Chicago group [1]. We further present a general finite temperature phase diagram both for the uniform and the trapped systems, and demonstrate how the universal scaling properties near the superfluid(SF)-to-Mott insulator(MI) transition can be observed by analysing the in-situ density profile. The characteristic temperature to find such quantum criticality is estimated to be of the order of the single-particle bandwidth, which should be achievable in the present or near future experiments. Finally, we examine the validity regime of the local fluctuation-dissipation theorem (FDT), which can be a used as a thermometry in the strongly interacting regime.Comment: 4 page

    Influence of the trap shape on the superfluid-Mott transition in ultracold atomic gases

    Full text link
    The coexistence of superfluid and Mott insulator, due to the quadratic confinement potential in current optical lattice experiments, makes the accurate detection of the superfluid-Mott transition difficult. Studying alternative trapping potentials which are experimentally realizable and have a flatter center, we find that the transition can be better resolved, but at the cost of a more difficult tuning of the particle filling. When mapping out the phase diagram using local probes and the local density approximation we find that the smoother gradient of the parabolic trap is advantageous.Comment: 5 pages, 6 figure
    corecore