6,269 research outputs found
Link between K-absorption edges and thermodynamic properties of warm-dense plasmas established by improved first-principles method
A precise calculation that translates shifts of X-ray K-absorption edges to
variations of thermodynamic properties allows quantitative characterization of
interior thermodynamic properties of warm dense plasmas by X-ray absorption
techniques, which provides essential information for inertial confinement
fusion and other astrophysical applications. We show that this interpretation
can be achieved through an improved first-principles method. Our calculation
shows that the shift of K-edges exhibits selective sensitivity to thermal
parameters and thus would be a suitable temperature index to warm dense
plasmas. We also show with a simple model that the shift of K-edges can be used
to detect inhomogeneity inside warm dense plasmas when combined with other
experimental tools
Extended First-Principles Molecular Dynamics Method From Cold Materials to Hot Dense Plasmas
An extended first-principles molecular dynamics (FPMD) method based on
Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD
method in the calculation of dense plasmas. The extended method treats the wave
functions of high energy electrons as plane waves analytically, and thus
expands the application of the FPMD method to the region of hot dense plasmas
without suffering from the formidable computational costs. In addition, the
extended method inherits the high accuracy of the Kohn-Sham scheme and keeps
the information of elec- tronic structures. This gives an edge to the extended
method in the calculation of the lowering of ionization potential, X-ray
absorption/emission spectra, opacity, and high-Z dense plasmas, which are of
particular interest to astrophysics, inertial confinement fusion engineering,
and laboratory astrophysics
- …