1,272 research outputs found

    Thermophysical properties of liquid carbon dioxide under shock compressions: Quantum molecular dynamic simulations

    Full text link
    Quantum molecular dynamic simulations are introduced to study the dynamical, electrical, and optical properties of carbon dioxide under dynamic compressions. The principal Hugoniot derived from the calculated equation of states is demonstrated to be well accordant with experimental results. Molecular dissociation and recombination are investigated through pair correlation functions, and decomposition of carbon dioxide is found to be between 40 and 50 GPa along the Hugoniot, where nonmetal-metal transition is observed. In addition, the optical properties of shock compressed carbon dioxide are also theoretically predicted along the Hugoniot

    The equation of state and nonmetal-metal transition of benzene under shock compression

    Full text link
    We employ quantum molecular dynamic simulations to investigate the behavior of benzene under shock conditions. The principal Hugoniot derived from the equation of state is determined. We compare our firs-principles results with available experimental data and provide predictions of chemical reactions for shocked benzene. The decomposition of benzene is found under the pressure of 11 GPa. The nonmetal-metal transition, which is associated with the rapid C-H bond breaking and the formation of atomic and molecular hydrogen, occurs under the pressure around 50 GPa. Additionally, optical properties are also studied.Comment: 12 pages, 5 figure

    Hugoniot of shocked liquid deuterium up to 300 GPa: Quantum molecular dynamic simulations

    Full text link
    Quantum molecular dynamic (QMD) simulations are introduced to study the thermophysical properties of liquid deuterium under shock compression. The principal Hugoniot is determined from the equation of states, where contributions from molecular dissociation and atomic ionization are also added onto the QMD data. At pressures below 100 GPa, our results show that the local maximum compression ratio of 4.5 can be achieved at 40 GPa, which is in good agreement with magnetically driven flyer and convergent-explosive experiments; At the pressure between 100 and 300 GPa, the compression ratio reaches a maximum of 4.95, which agrees well with recent high power laser-driven experiments. In addition, the nonmetal-metal transition and optical properties are also discussed.Comment: 4.1 pages, 4 figure

    Ab initio study of shock compressed oxygen

    Full text link
    Quantum molecular dynamic simulations are introduced to study the shock compressed oxygen. The principal Hugoniot points derived from the equation of state agree well with the available experimental data. With the increase of pressure, molecular dissociation is observed. Electron spin polarization determines the electronic structure of the system under low pressure, while it is suppressed around 30 ∼\sim 50 GPa. Particularly, nonmetal-metal transition is taken into account, which also occurs at about 30 ∼\sim 50 GPa. In addition, the optical properties of shock compressed oxygen are also discussed.Comment: 5 pages, 5 figure

    Electrical and optical properties of fluid iron from compressed to expanded regime

    Full text link
    Using quantum molecular dynamics simulations, we show that the electrical and optical properties of fluid iron change drastically from compressed to expanded regime. The simulation results reproduce the main trends of the electrical resistivity along isochores and are found to be in good agreement with experimental data. The transition of expanded fluid iron into a nonmetallic state takes place close to the density at which the constant volume derivative of the electrical resistivity on internal energy becomes negative. The study of the optical conductivity, absorption coefficient, and Rosseland mean opacity shows that, quantum molecular dynamics combined with the Kubo-Greenwood formulation provides a powerful tool to calculate and benchmark the electrical and optical properties of iron from expanded fluid to warm dense region
    • …
    corecore