11,190 research outputs found
Spokes cluster: The search for the quiescent gas
Context. Understanding the role of fragmentation is one of the most important
current questions of star formation. To better understand the process of star
and cluster formation, we need to study in detail the physical structure and
properties of the parental molecular cloud. The Spokes cluster, or NGC 2264 D,
is a rich protostellar cluster where previous N2H+(1-0) observations of its
dense cores presented linewidths consistent with supersonic turbulence.
However, the fragmentation of the most massive of these cores appears to have a
scale length consistent with that of the thermal Jeans length, suggesting that
turbulence was not dominant. Aims. These two results probe different density
regimes. Our aim is to determine if there is subsonic or less-turbulent gas
(than previously reported) in the Spokes cluster at higher densities. Methods.
We present APEX N2H+(3-2) and N2D+(3-2) observations of the NGC2264-D region to
measure the linewidths and the deuteration fraction of the higher density gas.
The critical densities of the selected transitions are more than an order of
magnitude higher than that of N2H+(1-0). Results. We find that the N2H+(3-2)
and N2D+(3-2) emission present significantly narrower linewidths than the
emission from N2H+(1-0) for most cores. In two of the spectra, the nonthermal
component is close (within 1-sigma) to the sound speed. In addition, we find
that the three spatially segregated cores, for which no protostar had been
confirmed show the highest levels of deuteration. Conclusions. These results
show that the higher density gas, probed with N2H+ and N2D+(3-2), reveals more
quiescent gas in the Spokes cluster than previously reported. More high-angular
resolution interferometric observations using high-density tracers are needed
to truly assess the kinematics and substructure within NGC2264-D. (Abridged)Comment: 8 pages, 4 figures. Accepted in A&
Combined creep and plastic analysis with numerical methods
The combination of plastic and creep analysis formulation are developed in this paper. The boundary element method and the finite element method are applied in plates in order to do the numerical analysis. This new approach is developed to combine the constitutive equation for time hardening creep and the constitutive equation for plasticity, which is based on the von Mises criterion and the Prandtl-Reuss flow. The implementation of creep strain in the formulation is achieved through domain integrals. The creep phenomenon takes place in the domain which is discretized into quadratic quadrilateral continuous and discontinuous cells. The creep analysis is applied to metals with a power law creep for the secondary creep stage. Results obtained for three models studied are compared to those published in the literature. The obtained results are in good agreement and evinced that the Boundary Element Method could be a suitable tool to deal with combined nonlinear problems
Breakdown of the operator product expansion in the 't Hooft model
We consider deep inelastic scattering in the 't Hooft model. Being solvable,
this model allows us to directly compute the moments associated with the cross
section at next-to-leading order in the 1/Q^2 expansion. We perform the same
computation using the operator product expansion. We find that all the terms
match in both computations except for one in the hadronic side, which is
proportional to a non-local operator. The basics of the result suggest that a
similar phenomenon may occur in four dimensions in the large N_c limit.Comment: 4 page
The "True" Column Density Distribution in Star-Forming Molecular Clouds
We use the COMPLETE Survey's observations of the Perseus star-forming region
to assess and intercompare three methods for measuring column density in
molecular clouds: extinction mapping (NIR); thermal emission mapping (FIR); and
mapping the intensity of CO isotopologues. The structures shown by all three
tracers are morphologically similar, but important differences exist.
Dust-based measures give similar, log-normal, distributions for the full
Perseus region, once careful calibration corrections are made. We also compare
dust- and gas-based column density distributions for physically-meaningful
sub-regions of Perseus, and we find significant variations in the distributions
for those regions. Even though we have used 12CO data to estimate excitation
temperatures, and we have corrected for opacity, the 13CO maps seem unable to
give column distributions that consistently resemble those from dust measures.
We have edited out the effects of the shell around the B-star HD 278942. In
that shell's interior and in the parts where it overlaps the molecular cloud,
there appears to be a dearth of 13CO, likely due either to 13CO not yet having
had time to form in this young structure, and/or destruction of 13CO in the
molecular cloud. We conclude that the use of either dust or gas measures of
column density without extreme attention to calibration and artifacts is more
perilous than even experts might normally admit. And, the use of 13CO to trace
total column density in detail, even after proper calibration, is unavoidably
limited in utility due to threshold, depletion, and opacity effects. If one's
main aim is to map column density, then dust extinction seems the best probe.
Linear fits amongst column density tracers are given, quantifying the inherent
uncertainties in using one tracer (when compared with others). [abridged]Comment: Accepted in ApJ. 13 pages, 6 color figures. It includes small changes
to improve clarity. For a version with high-resolution figures see
http://www.cfa.harvard.edu/COMPLETE/papers/Goodman_ColumnDensity.pd
Renormalization group improvement of the NRQCD Lagrangian and heavy quarkonium spectrum
We complete the leading-log renormalization group scaling of the NRQCD
Lagrangian at . The next-to-next-to-leading-log renormalization group
scaling of the potential NRQCD Lagrangian (as far as the singlet is concerned)
is also obtained in the situation . As a
by-product, we obtain the heavy quarkonium spectrum with the same accuracy in
the situation m\alpha_s^2 \simg \Lambda_{QCD}. When , this is equivalent to obtain the whole set of
terms in the heavy quarkonium spectrum.
The implications of our results in the non-perturbative situation are also mentioned.Comment: 16 pages, LaTeX. Minor changes. Final versio
An Alternative Methodology for Estimating Credit Quality Transition Matrices
This study presents an alternative way of estimating credit transition matrices using a hazard function model. The model is useful both for testing the validity of the Markovian assumption, frequently made in credit rating applications, and also for estimating transition matrices conditioning on firm-specific and macroeconomic covariates that influence the migration process. The model presented in the paper is likely to be useful in other applications, though we would hesitate to extrapolate numerical values of coefficients outside of our application. Transition matrices estimated this way may be an important tool for a credit risk administration system, in the sense that with them a practitioner can easily forecast the behavior of the clients´ratings in the future and their possible changes of stateFirms; macroeconomic variables; firm-specific covariates; hazard function; transition intensities. Classification JEL: C4; E44; G21; G23; G38.
Renormalization group improvement of the spectrum of Hydrogen-like atoms with massless fermions
We obtain the next-to-next-to-leading-log renormalization group improvement
of the spectrum of Hydrogen-like atoms with massless fermions by using
potential NRQED. These results can also be applied to the computation of the
muonic Hydrogen spectrum where we are able to reproduce some known double logs
at O(m\alpha^6). We compare with other formalisms dealing with log resummation
available in the literature.Comment: 9 pages, LaTeX. Minor changes, note added, final versio
- …